scholarly journals Occurrence of Leaf Spot Disease on Watermelon Caused by Pseudomonas syringae pv. syringae

2021 ◽  
Vol 27 (4) ◽  
pp. 180-186
Author(s):  
Kyoung-Soo Park ◽  
Ji-Hye Lee ◽  
Young-Tak Kim ◽  
Hye-Seong Kim ◽  
June-woo Lee ◽  
...  

Typical bacterial symptoms, water-soaking brown and black leaf spots with yellow halo, were observed on watermelon seedlings in nursery and field of Gyeongnam and Jeonnam provinces. Bacterial isolates from the lesion showed strong pathogenicity on watermelon and zucchini. One of them was rod-shaped with 4 polar flagella by observation of transmission electron microscopy. They belonged to LOPAT group 1. The phylogenical trees with nucleotide sequences of 16S rRNA and multi-locus sequencing typing with the 4 house-keeping genes (gapA, gltA, gyrB, and rpoD) of the isolates showed they were highly homologous to Pseudomonas syringae pv. syringae and grouped together with them, indicating that they were appeared as P. syringae genomospecies group 1. Morphological, physiological, and genetical characteristics of the isolates suggested they are P. syringae pv. syringae. We believe this is the first report that P. syringae pv. syringae caused leaf spot disease on watermelon in the Republic of Korea.

Plant Disease ◽  
2003 ◽  
Vol 87 (2) ◽  
pp. 203-203
Author(s):  
S. T. Koike ◽  
S. A. Tjosvold ◽  
J. Z. Groenewald ◽  
P. W. Crous

Bells-of-Ireland (Moluccella laevis) (Lamiaceae) is an annual plant that is field planted in coastal California (Santa Cruz County) for commercial cutflower production. In 2001, a new leaf spot disease was found in these commercially grown cutflowers. The disease was most serious in the winter-grown crops in 2001 and 2002, with a few plantings having as much as 100% disease incidence. All other plantings that were surveyed during this time had at least 50% disease. Initial symptoms consisted of gray-green leaf spots. Spots were generally oval in shape, often delimited by the major leaf veins, and later turned tan. Lesions were apparent on both adaxial and abaxial sides of the leaves. A cercosporoid fungus having fasciculate conidiophores, which formed primarily on the abaxial leaf surface, was consistently associated with the spots. Based on morphology and its host, this fungus was initially considered to be Cercospora molucellae Bremer & Petr., which was previously reported on leaves of M. laevis in Turkey (1). However, sequence data obtained from the internal transcribed spacer region (ITS1, ITS2) and the 5.8S gene (STE-U 5110, 5111; GenBank Accession Nos. AY156918 and AY156919) indicated there were no base pair differences between the bells-of-Ireland isolates from California, our own reference isolates of C. apii, as well as GenBank sequences deposited as C. apii. Based on these data, the fungus was subsequently identified as C. apii sensu lato. Pathogenicity was confirmed by spraying a conidial suspension (1.0 × 105 conidia/ml) on leaves of potted bells-of-Ireland plants, incubating the plants in a dew chamber for 24 h, and maintaining them in a greenhouse (23 to 25°C). After 2 weeks, all inoculated plants developed leaf spots that were identical to those observed in the field. C. apii was again associated with all leaf spots. Control plants, which were treated with water, did not develop any symptoms. The test was repeated and the results were similar. To our knowledge this is the first report of C. apii as a pathogen of bells-of-Ireland in California. Reference: (1) C. Chupp. A Monograph of the Fungus Genus Cercospora. Cornell University Press, Ithaca, New York, 1954.


Plant Disease ◽  
2015 ◽  
Vol 99 (2) ◽  
pp. 289-289 ◽  
Author(s):  
Y. Z. Zhu ◽  
W. J. Liao ◽  
D. X. Zou ◽  
Y. J. Wu ◽  
Y. Zhou

In May 2014, a severe leaf spot disease was observed on walnut tree (Juglans regia L.) in Hechi, Guangxi, China. Leaf spots were circular to semicircular in shape, water-soaked, later becoming grayish white in the center with a dark brown margin and bordered by a tan halo. Necrotic lesions were approximately 3 to 4 mm in diameter. Diseased leaves were collected from 10 trees in each of five commercial orchards. The diseased leaves were cut into 5 × 5 mm slices, dipped in 75% ethanol for 30 s, washed three times in sterilized water, sterilized with 0.1% (w/v) HgCl2 for 3 min, and then rinsed five times with sterile distilled water. These slices were placed on potato dextrose agar (PDA), followed by incubating at 28°C for about 3 to 4 days. Fungal isolates were obtained from these diseased tissues, transferred onto PDA plates, and incubated at 28°C. These isolates produced gray aerial mycelium and then became pinkish gray with age. Moreover, the reverse of the colony was pink. The growth rate was 8.21 to 8.41 mm per day (average = 8.29 ± 0.11, n = 3) at 28°C. The colonies produced pale orange conidial masses and were fusiform with acute ends, hyaline, sometimes guttulate, 4.02 to 5.25 × 13.71 to 15.72 μm (average = 4.56 ± 0.31 × 14.87 ± 1.14 μm, n = 25). The morphological characteristics and measurements of this fungal isolate matched the previous descriptions of Colletotrichum fioriniae (Marcelino & Gouli) R.G. Shivas & Y.P. Tan (2). Meanwhile, these characterizations were further confirmed by analysis of the partial sequence of five genes: the internal transcribed spacer (ITS) of the ribosomal DNA, beta-tubulin (β-tub) gene, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene, chitin synthase 3(CHS-1) gene, and actin (ACT) gene, with universal primers ITS4/ITS5, T1/βt2b, GDF1/GDR1, CHS1-79F/CHS1-354R, and ACT-512F/ACT-783R, respectively (1). BLAST of these DNA sequences using the nucleotide database of GenBank showed a high identify (ITS, 99%; β-tub, 99%; GAPDH, 99%; CHS-1, 99%; and ACT, 100%) with the previously deposited sequences of C. fioriniae (ITS, KF278459.1, NR111747.1; β-tub, AB744079.1, AB690809.1; GAPDH, KF944355.1, KF944354.1; CHS-1, JQ948987.1, JQ949005.1; and ACT, JQ949625.1, JQ949626.1). Koch's postulates were fulfilled by inoculating six healthy 1-year-old walnut trees in July 2014 with maximum and minimum temperatures of 33 and 26°C. The 6-mm mycelial plug, which was cut from the margin of a 5-day-old colony of the fungus on PDA, was placed onto each pin-wounded leaf, ensuring good contact between the mycelium and the wound. Non-colonized PDA plugs were placed onto pin-wounds as negative controls. Following inoculation, both inoculated and control plants were covered with plastic bags. Leaf spots, similar to those on naturally infected plants, were observed on the leaves inoculated with C. fioriniae within 5 days. No symptoms were observed on the negative control leaves. Finally, C. fioriniae was re-isolated from symptomatic leaves; in contrast, no fungus was isolated from the control, which confirmed Koch's postulates. To our knowledge, this is the first report of leaf disease on walnut caused by C. fioriniae. References: (1) L. Cai et al. Fungal Divers. 39:183, 2009. (2) R. G. Shivas and Y. P. Tan. Fungal Divers. 39:111, 2009.


Plant Disease ◽  
2011 ◽  
Vol 95 (3) ◽  
pp. 356-356
Author(s):  
S. Rooney-Latham ◽  
C. L. Blomquist ◽  
D. G. Fogle ◽  
E. G. Simmons

The genus Scilla (Hyacinthaceae) includes more than 50 species of perennial, flowering bulbs grown in landscapes worldwide. In December 2000 and May 2009, an unknown leaf spot disease on Scilla peruviana was submitted to the California Department of Food and Agriculture Plant Pest Diagnostic Lab. Samples were collected during routine phytosanitary inspections of production fields in Santa Cruz County in 2000 and Monterey County in 2009. The disease was detected before plants flowered in one field at each location each year and appeared to have a scattered distribution. Foliar spots were large, elliptical to oblong with grayish black centers and brown margins. Yellow halos surrounded many of the spots. Examination of the bulb material revealed small necrotic patches on the outer bulb scales. A rapidly growing fungus was isolated on one-half-strength acidified potato dextrose agar (APDA) from the sporulating leaf spots and necrotic patches on the bulbs. The colonies were greenish gray and became dark olivaceous with age. Dictyospores, which formed on simple to branched, geniculate conidiophores, were oblong, fusiform or obclavate and usually had a triangular apical cell. They were initially hyaline, turning olivaceous brown with age. Conidia measured 14 to 39 × 8 to 13 μm (average 24.6 × 9.9 μm) typically with two to four (but up to seven) thick, transverse septa and one to two longitudinal septa. Morphologically, the fungus matched the description of Embellisia hyacinthi de Hoog & Miller (1,3). To confirm pathogenicity, four leaves of four S. peruviana plants were inoculated by taking colonized mycelial plugs from 2-week-old cultures and placing them in a plastic screw-cap lid filled with sterile water. The water plus mycelial plug suspension in the lid was then clipped to the adaxial side of a pushpin-wounded leaf (4). Plants were placed in a dark dew chamber at 20°C for 48 h and then moved to a growth chamber at 20°C with a 12-h photoperiod. After 48 h, the clips, caps, and plugs were removed. An equal number of control plants were wounded and mock inoculated with noncolonized APDA agar plugs and the experiment was repeated. Leaf lesions were visible 3 days after clip removal and expanded to an average of 26 × 10 mm, 14 days after inoculation. Sporulation was observed in the lesions after 5 to 7 days and the fungus was isolated from all inoculated leaves. No symptoms developed on the control leaves. DNA sequencing of the internal transcribed spacer region of the isolate (GenBank Accession No. HQ425562) using primers ITS1 and ITS4 matched the identity of E. hyacinthi (2,4). E. hyacinthi has been reported as a foliar and bulb pathogen on Hyacinthus, Freesia, and Scilla in Japan and Europe including Great Britain. Bulbs infected with E. hyacinthi are generally less sound and less valuable than noninfected bulbs (1). To our knowledge, this is the first report of the disease on S. peruviana in California. References: (1) G. S. de Hoog and P. J. Muller. Neth. J. Plant Pathol. 79:85, 1973. (2) B. Pryor and D. M. Bigelow. Mycologia 95:1141, 2003. (3) E. Simmons. Mycotaxon 17:216, 1983. (4) L. E. Yakabe et al. Plant Dis. 93:883, 2009.


Plant Disease ◽  
2015 ◽  
Vol 99 (2) ◽  
pp. 282-282 ◽  
Author(s):  
J. Cruz ◽  
R. Tenreiro ◽  
L. Cruz

Representing over 25% of the vegetable production, Brassicaceae crops are very important for Portuguese agriculture. Xanthomonas campestris pv. raphani (Xcr) was first described as the causative agent of a leaf spot disease affecting radish and turnip (4). Despite its ability to infect Solanaceae hosts upon inoculation, this pathogen affects mostly Brassicaceae plants. Typical symptoms include circular dark spots that become lighter and are occasionally surrounded by a chlorotic halo. In severely affected leaves, spots were not limited by the veins and coalesced into irregular shapes that perforated the leaves, rendering the plants unsuitable for marketing. In the early 2000s, several isolates causing leaf spots on Brassica oleracea varieties (cauliflower, white cabbage, savoy cabbage, and tronchuda cabbage) were collected in Sintra, near Lisbon. The isolates, identified as putative X. campestris (Xc), formed typical yellow mucoid and convex colonies when grown on YDC medium. Biochemical characterization (2) showed their ability to produce levan and hydrolyze starch and esculin. Isolates were also able to use celobiose, trehalose, glucose, mannose, raffinose, and sucrose. Furthermore, the isolates were oxidase negative and were unable to hydrolyze arginine and to use rhamnose, indol, inositol, and sorbitol, confirming them as Xc. The expected 619-bp amplicon was obtained for all isolates, after PCR using primers DLH120/DLH125 (1). Koch's postulates were fulfilled through pathogenicity tests on B. oleracea cv. Wirosa and Raphanus sativus, hosts susceptible to Xcr as well as to X. campestris pv. campestris (Xcc). Inoculations on B. carinata (Assession No. PI199947) and Solanum lycopersicum, hosts susceptible only to Xcr, were performed to confirm pathovar identification (2). Four plants of each host were inoculated with each isolate by spraying bacterial water suspensions (OD600 = 0.1) onto leaf surfaces. Positive and negative controls were performed using Xcc type strain (CFBP 5241) and sterile distilled water, respectively. Plants were kept 15 days with 16-h light and 8-h dark photoperiods at 24 and 18°C, respectively, at RH >80% and checked daily for symptom development. Leaf spots typical of Xcr were observed for all isolates on all hosts 5 days after inoculation. All isolates were recovered after re-isolation from inoculated plants, retaining their initial features. Negative control plants showed no symptoms, while CFBP 5241 caused V-shaped lesions, typical of Xcc, on B. oleracea cv. Wirosa and R. sativus. Further confirmation of the identification was attained by partial sequencing of the gyrB gene, using primers X.gyr.fsp.s1/X.gyr.rsp3 (3). Sequences from four isolates (CPBF 143, Genbank KM094906; CPBF 207, GenBank KM094907; CPBF 209, GenBank GU596416; and CPBF 1171, GenBank GU596419) were compared by nucleotide blast at NCBI and displayed higher levels of DNA similarity (>98%) to NCPPB 1946, the type strain for Xcr, than to NCPPB 528, the type strain for Xcc. The polyphasic approach combining phenotypic and genomic data confirmed the presence of X. campestris pv. raphani in Portugal for the first time. References: (1) T. Berg et al. Plant Pathol. 54: 416, 2005. (2) R. Lelliot and D. Stead. Methods for the Diagnosis of Bacterial Diseases of Plants. Blackwell Scientific Publications, Oxford, England, 1987. (3) N. Parkinson et al. Int. J. Syst. Evol. Microbiol. 57:2881, 2007. (4) H. White. Phytopathology 20:653, 1930.


Plant Disease ◽  
2004 ◽  
Vol 88 (9) ◽  
pp. 1005-1010 ◽  
Author(s):  
B. Rawnsley ◽  
T. J. Wicks ◽  
E. S. Scott ◽  
B. E. Stummer

In Australia, Diaporthe perjuncta (formerly known as Phomopsis taxon 1) and Phomopsis viticola (Phomopsis taxon 2) have been associated with Phomopsis cane and leaf spot of grapevine. Although P. viticola causes distinct leaf spots, as well as lesions on shoots and canes, the pathogenicity of D. perjuncta is relatively unknown. The pathogenicity of D. perjuncta and P. viticola was studied in relation to symptom expression and bud loss. Only P. viticola caused brown-black, longitudinal, necrotic lesions on stem tissue and leaf spots characteristic of the disease, whereas both D. perjuncta and P. viticola induced bleaching of dormant canes. Inoculation of dormant buds with D. perjuncta did not cause bud death. D. perjuncta and P. viticola were reisolated from inoculated tissue and into pure culture. D. perjuncta colonized the epidermis and cortex of the grapevine shoot but not the vascular tissue. D. perjuncta appears to be an endophyte, rather than a pathogen of grapevine.


2020 ◽  
Vol 22 (1) ◽  
pp. 50
Author(s):  
Nining Saputri ◽  
Sartono Joko Santosa ◽  
Saiful Bahri

This study is titled Study of Biological Fertilizers on the intensity of Leaf Spots (Cercospora sp.) On Black Corn (Black Aztec) with the aim to study the types of biological fertilizers on the intensity of Cercospora sp. which began on November 9, 2019, in Jembangan Village, Gagaksipat Village, Ngemplak District, Boyolali District, Central Java, with a height of 150m (asl). This study uses a single factor Complete Randomized Block Design (RCBD) consisting of 10 treatments and 3 replications. The data from the results of this study were analyzed with the Duncan at the 5% level. The parameters observed include: intensity of leaf spot disease, weight of cob with corn husk per plant (gram), weight of cob without corn husk per plant (gram), weight of 100 corn seeds (gram). The results showed that: (1) Symptoms of leaf spot disease appear evenly on all biological fertilizers, symptoms of disease attack began to appear at the age of 30 days after planting. (2) In the treatment of biological fertilizer Megharizo on black corn concertration 10 ml/1,2 l (B2) can reduce the intensity of leaf spot disease. (3) The application of biological fertilizer from three doses has not been able to increase the yield of black corn to the weight of corn with corn husk, weight of corn without corn husk, and weight of 100 seeds.


2014 ◽  
Vol 14 (2) ◽  
pp. 170-177
Author(s):  
Eryna Elfasari Rangkuti ◽  
Dwi Suryanto ◽  
Kiki Nurtjahja ◽  
Erman Munir

Ability of watermelon endophytic bacteria to suppress development of leaf spot disease caused by Colletotrichum sp.  A studi on assay of endophytic bacteria to control Colletotrichum sp., causal agent of leaf spot disease on watermelon, was conducted. Colletotrichum sp. was isolated from infected leaf of leaf spot disease, while endophytic bacteria were isolated from stem, leaf, and root of watermelon healthy plant. Antagonistic assay was conducted by dual culture method. Hyphal abnormalities as a result of antagonistic assay was observed using light microscope. To determine the ability of endophytic bacterial isolates to control leaf spot disease, watermelon seeds were treated by dipping the seed in endophytic bacterial suspension. Seven endophytic bacterial isolates showed to inhibit Colletotrichum sp. to some extent. Two isolates DS 01 and BS 01 showed relatively high inhibition zone compared to others, therefore were choosen for further study. Abnormal hyphae such as broken, lysis, twisted, curled, and swollen hyphae were recorded as the result of antagonistic assay. Watermelon seed treatment revealed that dipping the seed in endophytic bacterial suspension of DS 01 and BS 01 reduced leaf spot disease to 12 and 24%, but inhibited seed growth by 12% and 44%, respectively. It seemed that all treatments showed to reduce seedling performance i.e seedling height, leaf number, and dry weight, compared to that of (-) control. DS 01 however seemed to increase dry weight of watermelon plants.


Jurnal Wasian ◽  
2015 ◽  
Vol 2 (2) ◽  
pp. 87
Author(s):  
Arif Irawan ◽  
Ilaa Anggraeni ◽  
Margaretta Christita

This research purposes to identify the pathogen causing leaf spot in cempaka seedling and its control technique. Identify cause of disease is necessary to know precise technique control. Identification of disease was conducted in macroscopic appearances and microscopically to determine pathogens. Identification is done by using the determination key of fungi. The results showed that the early signs of leaf spot disease on cempaka seedlings in the nursery are streaks or spots on the leaf surface with distinct boundaries. Leaf spots are formed generally brown surrounded by darker boundaries. The result shows leaf spot disease on cempaka seedling was caused by fungal pathogen Colletotrichum sp. Techniques for controlling the disease can be done by isolating the infected seeds, reducing the intensity of canopy, and using the appropriate fungicides.


Sign in / Sign up

Export Citation Format

Share Document