scholarly journals Fusarium Wilt of Korean Blackberry Caused by Fusarium cugenangense

2021 ◽  
Vol 27 (4) ◽  
pp. 187-191
Author(s):  
Wan-Gyu Kim ◽  
Hyo-Won Choi ◽  
Gyun-Sung Park ◽  
Weon-Dae Cho

Wilt symptoms were frequently observed in Korean blackberry (Rubus coreanus) plants grown in farmers’ fields located in Gochang and Jeongeup, Jeonbuk Province, Korea during disease surveys in July 2020. The disease occurred in 10 of the 13 fields surveyed in the two locations. The incidence of diseased plants in the fields was 5-80%. Seven isolates of Fusarium sp. were obtained from the diseased plants and examined for their morphological and molecular characteristics. All the isolates belonged to Fusarium oxysporum species complex based on the morphological characteristics but were identified as F. cugenangense based on the molecular characteristics. Two isolates of F. cugenangense were tested for pathogenicity on Korean blackberry plants by artificial inoculation. Pathogenicity of the two isolates on the plants was confirmed with the inoculation tests, which showed wilt symptoms similar to those observed in the diseased plants in the fields investigated. This is the first report of F. cugenangense causing Fusarium wilt in Korean blackberry.

Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1955
Author(s):  
Anysia Hedy Ujat ◽  
Ganesan Vadamalai ◽  
Yukako Hattori ◽  
Chiharu Nakashima ◽  
Clement Kiing Fook Wong ◽  
...  

The re-emergence of the Fusarium wilt caused by Fusarium odoratissimum (F. odoratissimum) causes global banana production loss. Thirty-eight isolates of Fusarium species (Fusarium spp.) were examined for morphological characteristics on different media, showing the typical Fusarium spp. The phylogenetic trees of Fusarium isolates were generated using the sequences of histone gene (H3) and translation elongation factor gene (TEF-1α). Specific primers were used to confirm the presence of F. odoratissimum. The phylogenetic trees showed the rich diversity of the genus Fusarium related to Fusarium wilt, which consists of F. odoratissimum, Fusarium grosmichelii, Fusarium sacchari, and an unknown species of the Fusarium oxysporum species complex. By using Foc-TR4 specific primers, 27 isolates were confirmed as F. odoratissimum. A pathogenicity test was conducted for 30 days on five different local cultivars including, Musa acuminata (AAA, AA) and Musa paradisiaca (AAB, ABB). Although foliar symptoms showed different severity of those disease progression, vascular symptoms of the inoculated plantlet showed that infection was uniformly severe. Therefore, it can be concluded that the Fusarium oxysporum species complex related to Fusarium wilt of banana in Malaysia is rich in diversity, and F. odoratissimum has pathogenicity to local banana cultivars in Malaysia regardless of the genotype of the banana plants.


2020 ◽  
Vol 134 ◽  
pp. 105167 ◽  
Author(s):  
A. Hernández-Cruz ◽  
A. Saldivia-Tejeda ◽  
H.V. Silva-Rojas ◽  
D. Fuentes-Aragón ◽  
C. Nava-Díaz ◽  
...  

Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 977-987 ◽  
Author(s):  
Zhixian Zhu ◽  
Lu Zheng ◽  
Li Pan ◽  
Tom Hsiang ◽  
Junbin Huang

Fusarium wilt is one of the most important diseases of Eleocharis dulcis (Chinese water chestnut) in China. In order to characterize the pathogens responsible, 69 Fusarium isolates were collected from diseased plants in E. dulcis production areas of the Chinese provinces Anhui, Fujian, Hubei, Hunan, Jiangsu, and Zhejiang. These were then identified based on morphological and molecular characteristics. F. commune was the most common species (92.8%) and was widely distributed in the six provinces. A novel species within the Gibberella fujikuroi species complex (GFSC) was found in Hubei and Zhejiang provinces (5.8%), and an unidentified Fusarium sp. was found only in Hubei province (1.4%). Thirty F. commune isolates from different provinces and four GFSC isolates were selected for sequence analyses of the translation elongation factor 1-α (EF-1α), the mitochondrial small subunit (mtSSU) ribosomal DNA, and the nuclear ribosomal intergenic spacer region (IGS). Maximum parsimony and Bayesian analyses of the multilocus sequence data of these two species plus other taxa showed that the two species formed two distinct, well-supported clades among the three individual and combined gene genealogies. Isolates from different locations were scattered, with no evidence of geographic specialization. Pathogenicity assays showed that the two Fusarium spp., including the unidentified Fusarium sp., were pathogenic to E. dulcis ‘Tuanfeng seven’. There was no relationship between the source of isolates and their pathogenicity. This is the first description of F. commune, a novel species within the GFSC, and an unidentified Fusarium sp. as causal agents of Fusarium wilt of E. dulcis in China.


Plant Disease ◽  
2021 ◽  
Author(s):  
Oliul Hassan ◽  
Taehyun Chang

In South Korea, ovate-leaf atractylodes (OLA) (Atractylodes ovata) is cultivated for herbal medicine. During May to June 2019, a disease with damping off symptoms on OLA seedlings were observed at three farmer fields in Mungyeong, South Korea. Disease incidence was estimated as approximately 20% based on calculating the proportion of symptomatic seedlings in three randomly selected fields. Six randomly selected seedlings (two from each field) showing damping off symptoms were collected. Small pieces (1 cm2) were cut from infected roots, surface-sterilized (1 minute in 0.5% sodium hypochlorite), rinsed twice with sterile water, air-dried and then plated on potato dextrose agar (PDA, Difco, and Becton Dickinson). Hyphal tips were excised and transferred to fresh PDA. Six morphologically similar isolates were obtained from six samples. Seven-day-old colonies, incubated at 25 °C in the dark on PDA, were whitish with light purple mycelia on the upper side and white with light purple at the center on the reverse side. Macroconidia were 3–5 septate, curved, both ends were pointed, and were 19.8–36.62 × 3.3–4.7 µm (n= 30). Microconidia were cylindrical or ellipsoid and 5.5–11.6 × 2.5–3.8 µm (n=30). Chlamydospores were globose and 9.6 –16.3 × 9.4 – 15.0 µm (n=30). The morphological characteristics of present isolates were comparable with that of Fusarium species (Maryani et al. 2019). Genomic DNA was extracted from 4 days old cultures of each isolate of SRRM 4.2, SRRH3, and SRRH5, EF-1α and rpb2 region were amplified using EF792 + EF829, and RPB2-5f2 + RPB2-7cr primer sets, respectively (Carbone and Kohn, 1999; O'Donnell et al. 2010) and sequenced (GenBank accession number: LC569791- LC569793 and LC600806- LC600808). BLAST query against Fusarium loci sampled and multilocus sequence typing database revealed that 99–100% identity to corresponding sequences of the F. oxysporum species complex (strain NRRL 28395 and 26379). Maximum likelihood phylogenetic analysis with MEGA v. 6.0 using the concatenated sequencing data for EF-1α and rpb2 showed that the isolates belonged to F. oxysporum species complex. Each three healthy seedlings with similar sized (big flower sabju) were grown for 20 days in a plastic pot containing autoclaved peat soil was used for pathogenicity tests. Conidial suspensions (106 conidia mL−1) of 20 days old colonies per isolate (two isolates) were prepared in sterile water. Three pots per strain were inoculated either by pouring 50 ml of the conidial suspension or by the same quantity of sterile distilled water as control. After inoculation, all pots were incubated at 25 °C with a 16-hour light/8-hour dark cycle in a growth chamber. This experiment repeated twice. Inoculated seedlings were watered twice a week. Approximately 60% of the inoculated seedlings per strain wilted after 15 days of inoculation and control seedlings remained asymptomatic. Fusarium oxysporum was successfully isolated from infected seedling and identified based on morphology and EF-1α sequences data to confirm Koch’s postulates. Fusarium oxysporum is responsible for damping-off of many plant species, including larch, tomato, melon, bean, banana, cotton, chickpea, and Arabidopsis thaliana (Fourie et al. 2011; Hassan et al.2019). To the best of our knowledge, this is the first report on damping-off of ovate-leaf atractylodes caused by F. oxysporum in South Korea. This finding provides a basis for studying the epidemic and management of the disease.


Plant Disease ◽  
2011 ◽  
Vol 95 (7) ◽  
pp. 877-877 ◽  
Author(s):  
G. Polizzi ◽  
D. Aiello ◽  
V. Guarnaccia ◽  
A. Vitale ◽  
G. Perrone ◽  
...  

Philotheca myoporoides (DC.) M.J. Bayly (previously known as Eriostemon myoporoides), commonly called long-leaf waxflower and native to eastern Australia (Rutaceae family), is a hardy compact shrub or small tree occurring in subtropical to cool temperate regions. P. myoporoides is cultivated in Sicily (Italy) for its ornamental appeal. During April of 2010, a widespread wilting was observed on approximately 80% of 2,000 1-year-old, potted long-leaf waxflower plants grown in a commercial nursery near Catania (eastern Sicily, Italy). Internally, symptomatic plants had conspicuous vascular brown discoloration from the crown to the canopy. Diseased crown and stem tissues of 20 plants were surface disinfested for 30 s in 1% NaOCl, rinsed in sterile water, plated on potato dextrose agar (PDA) amended with 100 mg/liter of streptomycin sulfate, and incubated at 25°C. A Fusarium sp. was consistently isolated from affected plant tissues. Colonies with white or light purple aerial mycelia and violet pigmentation on the underside of the cultures developed after 9 days. On carnation leaf agar, 20 single-spore isolates produced microconidia on short monophialides, macroconidia that were three to five septate with a pedicellate base, and solitary and double-celled or aggregate chlamydospores. A PCR assay was conducted on one representative isolate (ITEM 13490) by analyzing sequences of the benA gene (coding β-tubulin protein) and CaM gene (coding calmodulin protein) using the primers reported by O'Donnell et al. (1). The benA gene sequences of ITEM 13490 (GenBank No. FR828825) exhibited an identity of 100% to Fusarium oxysporum f. sp. radicis-lycopersici strain ATCC 52429 (GenBank No. DQ092480). CaM gene sequences of ITEM 13490 (GenBank No. FR828826) exhibited an identity of 99.6% to F. oxysporum strain ITEM 2367 (GenBank No. AJ560774). Morphological characteristics of the 20 isolates, as well as the PCR assay on a representative strain, identified the isolates associated with disease symptoms as F. oxysporum Schlechtend.:Fr. A pathogenicity test was performed by placing two 1-cm2 plugs of PDA from 9-day-old mycelial cultures near the crown on potted, healthy, 2-month-old cuttings of P. myoporoides. Thirty plants were inoculated with strain ITEM 13490 and the same number of plants served as noninoculated controls. All plants were enclosed for 4 days in plastic bags and placed in a growth chamber at 25 ± 1°C. Plants were then moved to a greenhouse where temperatures ranged from 23 to 27°C. First symptoms, which were identical to those observed in the nursery, developed on one plant 15 days after inoculation. Wilting was detected on all plants after 30 days. Control plants remained symptomless. F. oxysporum was successfully reisolated from symptomatic crown and stem tissues and identified as described above, fulfilling Koch's postulates. To our knowledge, this is the first report of F. oxysporum causing disease of P. myoporoides worldwide. Moreover, this pathogen was recently reported in the same nursery on Eremophila sp. (2), confirming the presence of Fusarium wilt as a potential threat to ornamental plant production in this area, and necessitates the innovation and development of disinfection methods for alveolar trays, greenhouses, and various propagation materials to reduce future disease outbreaks. References: (1) K. O'Donnell et al. Mycoscience 41:61, 2000. (2) G. Polizzi et al. Plant Dis 94:1509, 2010.


Plant Disease ◽  
2014 ◽  
Vol 98 (9) ◽  
pp. 1281-1281 ◽  
Author(s):  
I. Malbrán ◽  
C. A. Mourelos ◽  
M. S. Mitidieri ◽  
B. L. Ronco ◽  
G. A. Lori

The green belt area surrounding the city of La Plata, Argentina, produces more than 70% (around 280 ha) of the lettuce (Lactuca sativa L.) cultivated under greenhouse for fresh consumption in the country. In February 2011, April 2012, and December 2013, butterhead lettuce plants from cv. Lores showing wilt and stunted growth symptoms, red-to-brown discoloration of vascular tissues, and yellow leaves were found in greenhouses in La Plata. Sections of tap root, crown and stem from symptomatic plants showing dark-brown streaking of the vascular tissue were surface sterilized and isolations were made. A total of 21 monosporic isolates obtained from different lettuce production fields were identified as Fusarium oxysporum Schltdl. based on morphological characteristics (2). Vegetative compatibility group (VCG) analysis (1) was conducted on 11 of these isolates and all isolates belonged to the same VCG. To fulfil Koch's postulates, two pathogenicity tests were conducted with these 11 isolates in winter (July 2012) and summer (December 2013). Healthy 20-day-old butterhead lettuce seedlings of two cultivars (Reina de Mayo and Lores in the winter and summer tests, respectively) were inoculated by dipping the roots of each plant in a spore suspension (~3 × 105 CFU ml−1), planted in 1-liter pots containing autoclaved soil and grown in a greenhouse with only natural daylight. Control treatments were prepared by dipping the seedling roots in sterilized distilled water. All inoculated plants showed wilt symptoms 15 to 20 days after inoculation (dai) and 45 to 50 dai in the summer and winter pathogenicity tests, respectively. The delay in the appearance of symptoms observed during the winter test is consistent with the effect of planting date on the development and final incidence of Fusarium wilt of lettuce reported by Matheron et al. (3). No symptoms were observed in control treatments. F. oxysporum was re-isolated from vascular tissues of the stems of symptomatic plants and the formae speciales lactucae J.C. Hubb. & Gerik was confirmed by PCR using the specific primer pair GYCF1 and R943 (4). The identification of only one VCG for the tested isolates agrees with the hypothesis of seed transmission of the pathogen, which might explain the dissemination of Fusarium wilt of lettuce in geographically distant areas (2). Studies are being carried out to determine the race of these Argentinian isolates of F. oxysporum f. sp. lactucae. To our knowledge, this is the first report of F. oxysporum f. sp. lactucae infecting lettuce in Argentina. References: (1) J. C. Correll et al. Phytopathology 77:1640, 1987. (2) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Blackwell Publishing, Ames, IA, 2006. (3) M. E. Matheron et al. Plant Dis. 89:565, 2005. (4) G. C. Y. Mbofung and B. M. Pryor. Plant Dis. 94:860, 2010.


2021 ◽  
Author(s):  
Oliul Hassan ◽  
Taehyun Chang

Abstract Crown and root rot is the most important and destructive strawberry diseases in Korea as it causessubstantial economic loss. In August 2020, a severe outbreak of crown and root rot on strawberries (Fragaria×ananassa Duch.) was observed in the greenhouse at Sangju, South Korea. Infected plantlets displayed browning rot within the crown and root, stunted growth, and poor rooting. Thirty fungal isolates were procured from the affected plantlet. Isolates were identified based on morphological characteristics and pathogenicity test as well as sequence data obtained from internal transcribed spacer, large subunit ribosomal ribonucleic acid, translation elongation factor,and RNA polymerase Ⅱ-second largest subunit. Results showed that thecrown and root rot of strawberry in Korea was caused by three distinct fungal species:Fusarium oxysporum species complex, F. solani species complex, andPlectosphaerella cucumerina. To the best of our knowledge,F. solani species complex andP. cucumerinaare reported for the first time as the causal agents of the crown and root rot of strawberryin South Korea.Pathogenicity tests confirmed that these isolates are pathogenic to strawberry.Understanding the composition and biology of the pathogen population will be helpful toprovide effectivecontrol strategies for the disease.


2021 ◽  
Author(s):  
Deborah A. Samac

Abstract Fusarium oxysporum is a common soil inhabitant around the world. It is regarded as a species complex that includes non-pathogenic, plant pathogenic, and human pathogenic strains. The plant pathogens cause wilt diseases on most crop plants. F. oxysporum f.sp. medicaginis causes a fatal wilt disease on Medicago sativa, M. truncatula, and Vicia sativa. It is found throughout the USA and in Alberta, Canada. The limited reports of Fusarium wilt of alfalfa outside of these areas suggests that the pathogen is native to North America. The pathogen is potentially invasive through movement of infested soil; it is not seedborne. Infected alfalfa plants usually die several months after infection and can lead to significant stand and yield losses. Nearly all modern commercial cultivars are highly resistant or resistant to Fusarium wilt. F. oxysporum f.sp. medicaginis is not on an alert list nor is it a regulated pathogen.


Plant Disease ◽  
2019 ◽  
Vol 103 (5) ◽  
pp. 1006-1013 ◽  
Author(s):  
Alyssa Burkhardt ◽  
Peter M. Henry ◽  
Steven T. Koike ◽  
Thomas R. Gordon ◽  
Frank Martin

Isolates of the Fusarium oxysporum species complex have been characterized as plant pathogens that commonly cause vascular wilt, stunting, and yellowing of the leaves in a variety of hosts. F. oxysporum species complex isolates have been grouped into formae speciales based on their ability to cause disease on a specific host. F. oxysporum f. sp. fragariae is the causal agent of Fusarium wilt of strawberry and has become a threat to production as fumigation practices have changed in California. F. oxysporum f. sp. fragariae is polyphyletic and limited genetic markers are available for its detection. In this study, next-generation sequencing and comparative genomics were used to identify a unique genetic locus that can detect all of the somatic compatibility groups of F. oxysporum f. sp. fragariae identified in California. This locus was used to develop a TaqMan quantitative polymerase chain reaction assay and an isothermal recombinase polymerase amplification (RPA) assay that have very high sensitivity and specificity for more than 180 different isolates of the pathogen tested. RPA assay results from multiple field samples were validated with pathogenicity tests of recovered isolates.


2014 ◽  
Vol 104 (12) ◽  
pp. 1329-1339 ◽  
Author(s):  
Margaret L. Ellis ◽  
David R. Cruz Jimenez ◽  
Leonor F. Leandro ◽  
Gary P. Munkvold

Isolates in the Fusarium oxysporum species complex (FOSC) from soybean range from nonpathogenic to aggressive pathogens causing seedling damping-off, wilt, and root rot. The objective of this research was to characterize the genotype and phenotype of isolates within the FOSC recovered predominantly from soybean roots and seedlings. Sequence analyses of the translation elongation factor (tef1α) gene and the mitochondrial small subunit (mtSSU), polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) analysis of the intergenic spacer (IGS) region, and identification of the mating type loci were conducted for 170 isolates. Vegetative compatibility (VC) tests were conducted for 114 isolates. Isolate aggressiveness was tested using a rolled towel assay for 159 isolates. Phylogenetic analysis of the tef1α and mtSSU and PCR-RFLP analysis of the IGS region separated the FOSC isolates into five clades, including F. commune. Both mating type loci, MAT1-1 or MAT1-2, were present in isolates from all clades. The VC tests were not informative, because most VC groups consisted of a single isolate. Isolate aggressiveness varied within and among clades; isolates in clade 2 were significantly less aggressive (P < 0.0001) when compared with isolates from the other clades and F. commune. The results from this study demonstrate the high levels of genotypic and phenotypic diversity within the FOSC from soybean but further work is needed to identify characteristics associated with pathogenic capabilities.


Sign in / Sign up

Export Citation Format

Share Document