scholarly journals A STUDY ON RECENT CHANGES IN MONTHLY, SEASONAL AND ANNUAL EVAPORATION AT SELECTED LOCATIONS IN INDIA

MAUSAM ◽  
2021 ◽  
Vol 62 (1) ◽  
pp. 111-118
Author(s):  
I. J. VERMA ◽  
H. P. DAS ◽  
V. N. JADHAV
Keyword(s):  
2016 ◽  
Vol 223 ◽  
pp. 181-193 ◽  
Author(s):  
Dennis Baldocchi ◽  
Sara Knox ◽  
Iryna Dronova ◽  
Joe Verfaillie ◽  
Patty Oikawa ◽  
...  

2011 ◽  
Vol 137 ◽  
pp. 286-290 ◽  
Author(s):  
Xi Chun ◽  
Mei Jie Zhang ◽  
Mei Ping Liu

The objective of this study is to analyse the climate changing patterns chronologically for exposing the coincident relationships between the lake area fluctuation and the climate change in Qehan lake of Abaga county of Inner Mongolia. The results show that there’s highly interrelation between the changes of the lake area and the climatic factors here, the annual average temperature and annual evaporation are negatively interrelate to the lake area fluctuation, and the annual precipitation interrelate to it is positive. The lake area has descended about 75 km2 during the nearly past 40 years. There were about two considerable lake expansions in 1973, 1998 through the generally lake area descending process.


2016 ◽  
Vol 550 ◽  
pp. 27-37 ◽  
Author(s):  
J. Jódar ◽  
E. Custodio ◽  
M. Liotta ◽  
L.J. Lambán ◽  
C. Herrera ◽  
...  

2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Dae Hyun Kim ◽  
Bryan M. Jenkins

Recently, an open, liquid-film concentrator has been both theoretically and experimentally evaluated for increasing evaporation and concentration rates above those for simple solar evaporator basins (Kim, D. H., Jenkins, B. M., Yore, M. W., and Kim, N. J., 2007, “Salt Recovery From Agriculture Drainage Water Using a Liquid Film Solar-Assisted Concentrator: Simulation and Model Validation,” Sol. Energy, 81(10), pp. 1314–1321). For azimuth and tilt angles of the inclined brine concentrator where the maximum solar gain and mean wind direction are not in concurrence, the optimum orientation to maximize evaporation over a fixed interval of time was determined by simulation. Simulation was performed using ten years of hourly weather data for two different locations where wind blows mostly from the south and the north throughout the year, respectively (Davis and Five Points, CA) with different orientations and slope angles. Maximum annual evaporation for Davis occurred with the concentrator facing southwest and sloped at the latitude angle. At Five Points, maximum evaporation occurred with the inclined surface facing north even with the less favorable angle for solar absorption, indicating the importance of the wind speed-dependent mass transfer coefficient on overall performance. Additional experiments are needed to validate the simulations.


2012 ◽  
Vol 42 (7) ◽  
pp. 1143-1157 ◽  
Author(s):  
William E. Johns ◽  
Sarantis S. Sofianos

Abstract The exchange between the Red Sea and the Indian Ocean on synoptic time scales (days to weeks) is investigated using moored current meter data collected in the strait of Bab el Mandeb from June 1995 to November 1996. Transport variations through the strait on these time scales can reach amplitudes of up to 0.6 Sv (1 Sv ≡ 106 m3 s−1), or nearly twice as large as the mean rate of exchange through the strait driven by annual evaporation over the Red Sea. The synoptic transport variability appears to be driven by two primary forcing mechanisms: 1) local wind stress variability over the strait and 2) variation in the large-scale barometric pressure over the Red Sea. Simple models of the forced response are developed and are shown to reproduce the essential features of the observations. The response to barometric pressure forcing over the Red Sea is fundamentally barotropic, whereas the response to along-strait winds is barotropic at high frequencies and tends toward a two-layer exchange at low frequencies. The responses to both types of forcing show enhanced amplitude at the Helmholtz resonance frequency for the Red Sea, which occurs at a period of about 5 days. A linear two-layer model, incorporating both types of forcing and a reasonable frictional parameterization, is shown to account for about 70% of the observed transport variance within the strait.


Author(s):  
Guiyan Mo ◽  
Ya Huang ◽  
Qing Yang ◽  
Dayang Wang ◽  
Chongxun Mo

Abstract Based on the scenario hypothesis method, this paper applied a Soil and Water Assessment Tool (SWAT) to analyze the sensitivity of runoff to climate and land-use changes in the Longtan basin, China. Results indicated that (1) for every 1 °C increase in temperature, the average annual runoff decreased by 9.9 mm, and the average annual evaporation increased by 9.3 mm. However, for every 10% increase in rainfall, the average annual runoff and evapotranspiration increased by 96.3 mm and 11.53 mm, respectively. Obviously, runoff was more sensitive to the change in rainfall than temperature in the Longtan basin. Meanwhile, (2) forestland could conserve water resources, but its water consumption was larger. Although grassland played a relatively small role in water conservation, it consumed less water. At the same time, increasing the area of forestland and grassland could weaken peak floods, and the water retention function of vegetation could prevent runoff from increasing and decreasing steeply. Therefore, it is worth improving vegetation coverage.


Sign in / Sign up

Export Citation Format

Share Document