scholarly journals Verification of short range forecasts of extreme rainfall during monsoon

MAUSAM ◽  
2021 ◽  
Vol 66 (3) ◽  
pp. 375-386
Author(s):  
RAGHAVENDRA ASHRIT ◽  
KULDEEP SHARMA ◽  
ANUMEHA DUBE ◽  
GOPAL IYENGAR ◽  
ASHIS MITRA ◽  
...  
Fire ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 55
Author(s):  
Gary L. Achtemeier ◽  
Scott L. Goodrick

Abrupt changes in wind direction and speed caused by thunderstorm-generated gust fronts can, within a few seconds, transform slow-spreading low-intensity flanking fires into high-intensity head fires. Flame heights and spread rates can more than double. Fire mitigation strategies are challenged and the safety of fire crews is put at risk. We propose a class of numerical weather prediction models that incorporate real-time radar data and which can provide fire response units with images of accurate very short-range forecasts of gust front locations and intensities. Real-time weather radar data are coupled with a wind model that simulates density currents over complex terrain. Then two convective systems from formation and merger to gust front arrival at the location of a wildfire at Yarnell, Arizona, in 2013 are simulated. We present images of maps showing the progress of the gust fronts toward the fire. Such images can be transmitted to fire crews to assist decision-making. We conclude, therefore, that very short-range gust front prediction models that incorporate real-time radar data show promise as a means of predicting the critical weather information on gust front propagation for fire operations, and that such tools warrant further study.


2014 ◽  
Vol 29 (3) ◽  
pp. 489-504 ◽  
Author(s):  
David R. Novak ◽  
Christopher Bailey ◽  
Keith F. Brill ◽  
Patrick Burke ◽  
Wallace A. Hogsett ◽  
...  

Abstract The role of the human forecaster in improving upon the accuracy of numerical weather prediction is explored using multiyear verification of human-generated short-range precipitation forecasts and medium-range maximum temperature forecasts from the Weather Prediction Center (WPC). Results show that human-generated forecasts improve over raw deterministic model guidance. Over the past two decades, WPC human forecasters achieved a 20%–40% improvement over the North American Mesoscale (NAM) model and the Global Forecast System (GFS) for the 1 in. (25.4 mm) (24 h)−1 threshold for day 1 precipitation forecasts, with a smaller, but statistically significant, 5%–15% improvement over the deterministic ECMWF model. Medium-range maximum temperature forecasts also exhibit statistically significant improvement over GFS model output statistics (MOS), and the improvement has been increasing over the past 5 yr. The quality added by humans for forecasts of high-impact events varies by element and forecast projection, with generally large improvements when the forecaster makes changes ≥8°F (4.4°C) to MOS temperatures. Human improvement over guidance for extreme rainfall events [3 in. (76.2 mm) (24 h)−1] is largest in the short-range forecast. However, human-generated forecasts failed to outperform the most skillful downscaled, bias-corrected ensemble guidance for precipitation and maximum temperature available near the same time as the human-modified forecasts. Thus, as additional downscaled and bias-corrected sensible weather element guidance becomes operationally available, and with the support of near-real-time verification, forecaster training, and tools to guide forecaster interventions, a key test is whether forecasters can learn to make statistically significant improvements over the most skillful of this guidance. Such a test can inform to what degree, and just how quickly, the role of the forecaster changes.


2012 ◽  
Vol 51 (10) ◽  
pp. 1835-1854 ◽  
Author(s):  
Jure Cedilnik ◽  
Dominique Carrer ◽  
Jean-François Mahfouf ◽  
Jean-Louis Roujean

AbstractThis study examines the impact of daily satellite-derived albedos on short-range forecasts in a limited-area numerical weather prediction (NWP) model over Europe. Contrary to previous studies in which satellite products were used to derive monthly “climatologies,” a daily surface (snow free) albedo is analyzed by a Kalman filter. The filter combines optimally a satellite product derived from the Meteosat Second Generation geostationary satellite [and produced by the Land Surface Analyses–Satellite Application Facility of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT)], an albedo climatology, and a priori information given by “persistence.” The surface albedo analyzed for a given day is used as boundary conditions of the NWP model to run forecasts starting the following day. Results from short-range forecasts over a 1-yr period reveal the capacity of satellite information to reduce model biases and RMSE in screen-level temperature (during daytime and intermediate seasons). The impact on forecast scores is larger when considering the analyzed surface albedo rather than another climatologically based albedo product. From comparisons with measurements from three flux-tower stations over mostly homogeneous French forests, it is seen that the model biases in surface net radiation are significantly reduced. An impact on the whole planetary boundary layer, particularly in summer, results from the use of an observed surface albedo. An unexpected behavior produced in summer by the satellite-derived albedo on surface temperature is also explained. The forecast runs presented here, performed in dynamical adaptation mode, will be complemented later on by data assimilation experiments over typically monthly periods.


Sign in / Sign up

Export Citation Format

Share Document