High-Resolution Climate Predictions and Short-Range Forecasts to Improve the Process Understanding and the Representation of Land-Surface Interactions in the WRF Model in Southwest Germany (WRFCLIM)

Author(s):  
Hans-Stefan Bauer ◽  
Kirsten Warrach-Sagi ◽  
Volker Wulfmeyer ◽  
Thomas Schwitalla ◽  
Martin Kirn
2012 ◽  
Vol 51 (10) ◽  
pp. 1835-1854 ◽  
Author(s):  
Jure Cedilnik ◽  
Dominique Carrer ◽  
Jean-François Mahfouf ◽  
Jean-Louis Roujean

AbstractThis study examines the impact of daily satellite-derived albedos on short-range forecasts in a limited-area numerical weather prediction (NWP) model over Europe. Contrary to previous studies in which satellite products were used to derive monthly “climatologies,” a daily surface (snow free) albedo is analyzed by a Kalman filter. The filter combines optimally a satellite product derived from the Meteosat Second Generation geostationary satellite [and produced by the Land Surface Analyses–Satellite Application Facility of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT)], an albedo climatology, and a priori information given by “persistence.” The surface albedo analyzed for a given day is used as boundary conditions of the NWP model to run forecasts starting the following day. Results from short-range forecasts over a 1-yr period reveal the capacity of satellite information to reduce model biases and RMSE in screen-level temperature (during daytime and intermediate seasons). The impact on forecast scores is larger when considering the analyzed surface albedo rather than another climatologically based albedo product. From comparisons with measurements from three flux-tower stations over mostly homogeneous French forests, it is seen that the model biases in surface net radiation are significantly reduced. An impact on the whole planetary boundary layer, particularly in summer, results from the use of an observed surface albedo. An unexpected behavior produced in summer by the satellite-derived albedo on surface temperature is also explained. The forecast runs presented here, performed in dynamical adaptation mode, will be complemented later on by data assimilation experiments over typically monthly periods.


2020 ◽  
Author(s):  
Sha Lu ◽  
Weidong Guo ◽  
Yongkang Xue ◽  
Fang Huang

<p>The Land surface scheme is crucial for the performance of regional climate models in dynamic downscaling application. In this study, we investigate the sensitivity of the simulation  with high resolution (10km) WRF model to the land surface schemes over Central Asia. The high resolution WRF simulations for 19 summers from 2000 to 2018 are conducted with four different land surface schemes (hereafter referred to as Exp-CLM, Exp-Noah-MP, Exp-PX and Exp-SSiB, respectively). The initial and boundary conditions for the WRF model simulations are provided from the NCEP-FNL analysis product. The ERA-Interim reanalysis (ERA), the GHCN-CAMS (CAMS) and the CRU gridded data are used to comprehensively evaluate the WRF simulations. Compared with verification data, the WRF model with high resolution can reasonably reproduce the spatial patterns of summer mean large scale atmospheric circulation, 2-m temperature and precipitation. The simulation results, however, are sensitive to the option of land surface scheme. The performance of Exp-CLM4 and Exp-SSiB are better than that of Exp-Noah-MP and Exp-PX assessed by the multivariable integrated evaluation method. To comprehensively understand the dynamic and physical mechanisms behind the WRF model sensitivity to land surface schemes, the differences in the surface energy balance between the ensemble means Ens-CLM4-SSiB and Ens-NoanMP-PX are analyzed in detail. The results demonstrate that the intensity of the simulated sensible heat flux over Central Asia is weaker in Ens-CLM4-SSiB than that in Ens-NoahMP-PX. As a result, large differences in geopotential height occur over the model simulation domain. The simulated wind fields are subsequently affected due to the geostrophic adjustment process, thus the simulation of 2-m temperature, precipitation, surface soil moisture and surface skin temperature are all affected.</p>


Author(s):  
Luca Furnari ◽  
Linus Magnusson ◽  
Giuseppe Mendicino ◽  
Alfonso Senatore

Fully coupled atmospheric-hydrological models allow a more realistic representation of the land surface–boundary layer continuum, representing both high-resolution land-surface/subsurface water lateral redistribution and the related feedback towards the atmosphere. This study evaluates the potential contribution of the fully coupled approach in extended-range mesoscale hydrometeorological ensemble forecasts. Previous studies have shown, for deterministic simulations, that the effect of fully coupling for short-range forecasts is minor compared to other sources of uncertainty, however, it becomes not negligible when increasing the forecast period. Through a proof-of-concept consisting of an ensemble (50 members from the ECMWF Ensemble Prediction System) seven-days-in-advance forecast of a high impact event affecting the Calabrian peninsula (southern Italy, Mediterranean basin) on November 2019, the paper elucidates the extent to which the improved representation of the terrestrial water lateral transport in the Weather Research and Forecasting (WRF) – Hydro modeling system affects the ensemble water balance, focusing on the precipitation and the hydrological response, in terms of both soil moisture dynamics and streamflow in 14 catchments spanning over 42% of the region. The fully coupled approach caused an increase of surface soil moisture and latent heat flux from land in the days preceding the event, partially affecting the lower Planetary Boundary Layer. However, when shoreward moisture transport from surrounding sea rapidly increased becoming the dominant process, only a weak signature of soil moisture contribution could be detected, resulting in only slightly higher precipitation forecast and not clear variation trend of peak flow, even though the latter variable increased up to 10% in some catchments. Overall, this study highlighted a remarkable performance of the medium-range ensemble forecasts, suggesting a profitable use of the fully coupled approach for forecasting purposes in circumstances in which soil moisture dynamics is more relevant and needs to be better addressed.


2016 ◽  
Author(s):  
Thomas Schwitalla ◽  
Hans-Stefan Bauer ◽  
Volker Wulfmeyer ◽  
Kirsten Warrach-Sagi

Abstract. The impact of a convection permitting (CP) northern hemisphere latitude-belt simulation with the Weather Research and Forecasting (WRF) model was investigated during the July and August 2013. For this application, the WRF model together with the NOAH land-surface model (LSM) was applied at two different horizontal resolutions, 0.03° (HIRES) and 0.12° (LOWRES). The set-up as a latitude-belt domain avoids disturbances that originate from the western and eastern boundaries and therefore allows to study the impact of model resolution and physical parameterizations on the results. Both simulations were forced by ECMWF operational analysis data at the northern and southern domain boundaries and the high-resolution Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) data at the sea surface. The simulations are compared to the operational ECMWF analysis for the representation of large scale features. To compare the simulated precipitation, the operational ECMWF forecast, the CPC MORPHing (CMORPH), and the ENSEMBLES gridded observation precipitation data set (E-OBS) were used. Compared to the operational high-resolution ECMWF analysis, both simulations are able to capture the large scale circulation pattern though the strength of the Pacific high is considerably overestimated in the LOWRES simulation. Major differences between ECMWF and WRF occur during July 2013 when the lower resolution simulation shows a significant negative bias over the North Atlantic which is not observed in the CP simulation. The analysis indicates deficiencies in the applied combinations of cloud microphysics and convection parametrization on the coarser grid scale in subpolar regions. The overall representation of the 500 hPa geopotential height surface is also improved by the CP simulation compared to the LOWRES simulation apart across Newfoundland where the geopotential height is higher than in the LOWRES simulation due to a northward shift of the location of the Atlantic high pressure system. Both simulations show higher wind speeds in the boundary layer by about 1.5 m s−1 compared to the the ECMWF analysis. Due to the higher surface evaporation, this results in a moist bias of 0.5 g kg−1 at 925 hPa in the planetary boundary layer compared to the ECMWF analysis. Major differences between ECMWF and WRF occur in the simulation of the 2-m temperatures over the Asian desert and steppe regions. They are significantly higher in WRF by about 5 K both during day- and night-time presumably as a result of different soil hydraulic parameters used in the NOAH land surface model for steppe regions. The precipitation of the HIRES simulation shows a better spatial agreement with CMORPH especially over mountainous terrain. The overall bias reduces from 80 mm at the coarser resolution to 50 mm in the HIRES simulation and the root mean square error is reduced by about 35 % when compared to the CMORPH precipitation analysis. The precipitation distribution agrees much better with the CMORPH data than the LOWRES simulation which tends to overestimate precipitation, mainly caused by the convection parametrization. Especially over Europe the CP resolution reduces the precipitation bias by about 30 % to 20 mm as a result of a better terrain representation and due to the avoidance of the convection parameterization.


2006 ◽  
Vol 134 (11) ◽  
pp. 3174-3189 ◽  
Author(s):  
Christian Sutton ◽  
Thomas M. Hamill ◽  
Thomas T. Warner

Abstract Current generation short-range ensemble forecast members tend to be unduly similar to each other, especially for components such as surface temperature and precipitation. One possible cause of this is a lack of perturbations to the land surface state. In this experiment, a two-member ensemble of the Advanced Research Weather Research and Forecasting (WRF) model (ARW) was run from two different soil moisture analyses. One-day forecasts were conducted for six warm-season cases over the central United States with moderate soil moistures, both with explicit convection at 5-km grid spacing and with parameterized convection at 20-km grid spacing. Since changing the convective parameterization has previously been demonstrated to cause significant differences between ensemble forecast members, 20-km simulations were also conducted that were initialized with the same soil moisture but that used two different convective parameterizations as a reference. At 5 km, the forecast differences due to changing the soil moisture were comparable to the differences in 20-km simulations with the same soil moisture but with a different convective parameterization. The differences of 20-km simulations from different soil moistures were occasionally large but typically smaller than the differences from changing the convective parameterization. Thus, perturbing the state of the land surface for this version of WRF/ARW was judged to be likely to increase the spread of warm-season operational short-range ensemble forecasts of precipitation and surface temperature when soil moistures are moderate in value, especially if the ensemble is comprised of high-resolution members with explicit convection.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1436
Author(s):  
Lucas Ribeiro Diaz ◽  
Daniel Caetano Santos ◽  
Pâmela Suélen Käfer ◽  
Nájila Souza da Rocha ◽  
Savannah Tâmara Lemos da Costa ◽  
...  

This work gives a first insight into the potential of the Weather Research and Forecasting (WRF) model to provide high-resolution vertical profiles for land surface temperature (LST) retrieval from thermal infrared (TIR) remote sensing. WRF numerical simulations were conducted to downscale NCEP Climate Forecast System Version 2 (CFSv2) reanalysis profiles, using two nested grids with horizontal resolutions of 12 km (G12) and 3 km (G03). We investigated the utility of these profiles for the atmospheric correction of TIR data and LST estimation, using the moderate resolution atmospheric transmission (MODTRAN) model and the Landsat 8 TIRS10 band. The accuracy evaluation was performed using 27 clear-sky cases over a radiosonde station in Southern Brazil. We included in the comparative analysis NASA’s Atmospheric Correction Parameter Calculator (ACPC) web-tool and profiles obtained directly from the NCEP CFSv2 reanalysis. The atmospheric parameters from ACPC, followed by those from CFSv2, were in better agreement with parameters calculated using in situ radiosondes. When applied into the radiative transfer equation (RTE) to retrieve LST, the best results (RMSE) were, in descending order: CFSv2 (0.55 K), ACPC (0.56 K), WRF G12 (0.79 K), and WRF G03 (0.82 K). Our findings suggest that there is no special need to increase the horizontal resolution of reanalysis profiles aiming at RTE-based LST retrieval. However, the WRF results were still satisfactory and promising, encouraging further assessments. We endorse the use of the well-known ACPC and recommend the NCEP CFSv2 profiles for TIR atmospheric correction and LST single-channel retrieval.


Author(s):  
Josipa Milovac ◽  
Oliver-Lloyd Branch ◽  
Hans-Stefan Bauer ◽  
Thomas Schwitalla ◽  
Kirsten Warrach-Sagi ◽  
...  

Author(s):  
W. Lo ◽  
J.C.H. Spence ◽  
M. Kuwabara

Work on the integration of STM with REM has demonstrated the usefulness of this combination. The STM has been designed to replace the side entry holder of a commercial Philips 400T TEM. It allows simultaneous REM imaging of the tip/sample region of the STM (see fig. 1). The REM technique offers nigh sensitivity to strain (<10−4) through diffraction contrast and high resolution (<lnm) along the unforeshortened direction. It is an ideal technique to use for studying tip/surface interactions in STM.The elastic strain associated with tunnelling was first imaged on cleaved, highly doped (S doped, 5 × 1018cm-3) InP(110). The tip and surface damage observed provided strong evidence that the strain was caused by tip/surface contact, most likely through an insulating adsorbate layer. This is consistent with the picture that tunnelling in air, liquid or ordinary vacuum (such as in a TEM) occurs through a layer of contamination. The tip, under servo control, must compress the insulating contamination layer in order to get close enough to the sample to tunnel. The contaminant thereby transmits the stress to the sample. Elastic strain while tunnelling from graphite has been detected by others, but never directly imaged before. Recent results using the STM/REM combination has yielded the first direct evidence of strain while tunnelling from graphite. Figure 2 shows a graphite surface elastically strained by the STM tip while tunnelling (It=3nA, Vtip=−20mV). Video images of other graphite surfaces show a reversible strain feature following the tip as it is scanned. The elastic strain field is sometimes seen to extend hundreds of nanometers from the tip. Also commonly observed while tunnelling from graphite is an increase in the RHEED intensity of the scanned region (see fig.3). Debris is seen on the tip and along the left edges of the brightened scan region of figure 4, suggesting that tip abrasion of the surface has occurred. High resolution TEM images of other tips show what appear to be attached graphite flakes. The removal of contamination, possibly along with the top few layers of graphite, seems a likely explanation for the observed increase in RHEED reflectivity. These results are not inconsistent with the “sliding planes” model of tunnelling on graphite“. Here, it was proposed that the force due to the tunnelling probe acts over a large area, causing shear of the graphite planes when the tip is scanned. The tunneling current is then modulated as the planes of graphite slide in and out of registry. The possiblity of true vacuum tunnelling from the cleaned graphite surface has not been ruled out. STM work function measurements are needed to test this.


Sign in / Sign up

Export Citation Format

Share Document