scholarly journals A Comparison of Water Vapor Quantities from Model Short-Range Forecasts and ARM Observations

2006 ◽  
Author(s):  
J. Hnilo
2013 ◽  
Vol 141 (1) ◽  
pp. 93-111
Author(s):  
Luiz F. Sapucci ◽  
Dirceu L. Herdies ◽  
Renata W. B. Mendonça

Abstract Water vapor plays a crucial role in atmospheric processes and its distribution is associated with cloud-cover fraction and rainfall. The inclusion of integrated water vapor (IWV) estimates in numerical weather prediction improves the vertical structure of the humidity analysis and consequently contributes to obtaining a more realistic atmospheric state. Currently, satellite remote sensing is the most important source of humidity measurements in the Southern Hemisphere, providing information with good horizontal resolution and global coverage. In this study, the inclusion of IWV retrieved from the Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A (AIRS/AMSU) and Special Sensor Microwave Imager (SSM/I) were investigated as additional information in the Physical-space Statistical Analysis System (PSAS), which is the operational data assimilation system at the Center for Weather Forecasting and Climate Studies of the Brazilian National Institute for Space Research (CPTEC/INPE). Experiments were carried out with and without the assimilation of IWV values from both sensors. Results show that, in general, the IWV assimilation reduces the error in short-range forecasts of humidity profile, particularly over tropical regions. In these experiments, an analysis of the impact of the inclusion of IWV values from SSM/I and AIRS/AMSU sensors was done. Results indicated that the impact of the SSM/I values is significant over high-latitude oceanic regions in the Southern Hemisphere, while the impact of AIRS/AMSU values is more significant over continental regions where surface measurements are scarce, such as the Amazonian region. In that area the assimilation of IWV values from the AIRS/AMSU sensor shows a tendency to reduce the overestimate of the precipitation in short-range forecasts.


2011 ◽  
Vol 26 (6) ◽  
pp. 1056-1066 ◽  
Author(s):  
Christian Herold ◽  
Dietrich Althausen ◽  
Detlef Müller ◽  
Matthias Tesche ◽  
Patric Seifert ◽  
...  

Abstract Water vapor measurements with the multiwavelength Raman lidar Backscatter Extinction Lidar-Ratio Temperature Humidity Profiling Apparatus (BERTHA) were performed during the Convective and Orographically-induced Precipitation Study (COPS) in the Black Forest, Germany, from June to August 2007. For quality assurance, profiles of the water vapor mixing ratio measured with BERTHA are compared to simultaneous measurements of a radiosonde and an airborne differential absorption lidar (DIAL) on 31 July 2007. The differences from the radiosonde observations are found to be on average 1.5% and 2.5% in the residual layer and in the free troposphere, respectively. During the two overflights at 1937 and 2018 UTC, the differences from the DIAL results are −2.2% and −3.7% in the residual layer and 2.1% and −2.6% in the free troposphere. After this performance check, short-range forecasts from the German Meteorological Service’s (Deutscher Wetterdienst, DWD) version of the Consortium for Small-Scale Modeling (COSMO-DE) model are compared to the BERTHA measurements for two case studies. Generally, it is found that water vapor mixing ratios from short-range forecasts are on average 7.9% drier than the values measured in the residual layer. In the free troposphere, modeled values are 9.7% drier than the measurements.


Fire ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 55
Author(s):  
Gary L. Achtemeier ◽  
Scott L. Goodrick

Abrupt changes in wind direction and speed caused by thunderstorm-generated gust fronts can, within a few seconds, transform slow-spreading low-intensity flanking fires into high-intensity head fires. Flame heights and spread rates can more than double. Fire mitigation strategies are challenged and the safety of fire crews is put at risk. We propose a class of numerical weather prediction models that incorporate real-time radar data and which can provide fire response units with images of accurate very short-range forecasts of gust front locations and intensities. Real-time weather radar data are coupled with a wind model that simulates density currents over complex terrain. Then two convective systems from formation and merger to gust front arrival at the location of a wildfire at Yarnell, Arizona, in 2013 are simulated. We present images of maps showing the progress of the gust fronts toward the fire. Such images can be transmitted to fire crews to assist decision-making. We conclude, therefore, that very short-range gust front prediction models that incorporate real-time radar data show promise as a means of predicting the critical weather information on gust front propagation for fire operations, and that such tools warrant further study.


2012 ◽  
Vol 51 (10) ◽  
pp. 1835-1854 ◽  
Author(s):  
Jure Cedilnik ◽  
Dominique Carrer ◽  
Jean-François Mahfouf ◽  
Jean-Louis Roujean

AbstractThis study examines the impact of daily satellite-derived albedos on short-range forecasts in a limited-area numerical weather prediction (NWP) model over Europe. Contrary to previous studies in which satellite products were used to derive monthly “climatologies,” a daily surface (snow free) albedo is analyzed by a Kalman filter. The filter combines optimally a satellite product derived from the Meteosat Second Generation geostationary satellite [and produced by the Land Surface Analyses–Satellite Application Facility of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT)], an albedo climatology, and a priori information given by “persistence.” The surface albedo analyzed for a given day is used as boundary conditions of the NWP model to run forecasts starting the following day. Results from short-range forecasts over a 1-yr period reveal the capacity of satellite information to reduce model biases and RMSE in screen-level temperature (during daytime and intermediate seasons). The impact on forecast scores is larger when considering the analyzed surface albedo rather than another climatologically based albedo product. From comparisons with measurements from three flux-tower stations over mostly homogeneous French forests, it is seen that the model biases in surface net radiation are significantly reduced. An impact on the whole planetary boundary layer, particularly in summer, results from the use of an observed surface albedo. An unexpected behavior produced in summer by the satellite-derived albedo on surface temperature is also explained. The forecast runs presented here, performed in dynamical adaptation mode, will be complemented later on by data assimilation experiments over typically monthly periods.


Sign in / Sign up

Export Citation Format

Share Document