scholarly journals Verification of forecasts of IMD NWP based cyclone prediction system (CPS) for cyclones over the north Indian seas during 2013

MAUSAM ◽  
2021 ◽  
Vol 66 (3) ◽  
pp. 497-510
Author(s):  
S.D. KOTAL ◽  
SUMITKUMAR BHATTACHARYA ◽  
S.K.ROY BHOWMIK ◽  
P.K. KUNDU
2012 ◽  
Vol 27 (3) ◽  
pp. 757-769 ◽  
Author(s):  
James I. Belanger ◽  
Peter J. Webster ◽  
Judith A. Curry ◽  
Mark T. Jelinek

Abstract This analysis examines the predictability of several key forecasting parameters using the ECMWF Variable Ensemble Prediction System (VarEPS) for tropical cyclones (TCs) in the North Indian Ocean (NIO) including tropical cyclone genesis, pregenesis and postgenesis track and intensity projections, and regional outlooks of tropical cyclone activity for the Arabian Sea and the Bay of Bengal. Based on the evaluation period from 2007 to 2010, the VarEPS TC genesis forecasts demonstrate low false-alarm rates and moderate to high probabilities of detection for lead times of 1–7 days. In addition, VarEPS pregenesis track forecasts on average perform better than VarEPS postgenesis forecasts through 120 h and feature a total track error growth of 41 n mi day−1. VarEPS provides superior postgenesis track forecasts for lead times greater than 12 h compared to other models, including the Met Office global model (UKMET), the Navy Operational Global Atmospheric Prediction System (NOGAPS), and the Global Forecasting System (GFS), and slightly lower track errors than the Joint Typhoon Warning Center. This paper concludes with a discussion of how VarEPS can provide much of this extended predictability within a probabilistic framework for the region.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jeremy M. Klavans ◽  
Mark A. Cane ◽  
Amy C. Clement ◽  
Lisa N. Murphy

AbstractThe North Atlantic Oscillation (NAO) is predictable in climate models at near-decadal timescales. Predictive skill derives from ocean initialization, which can capture variability internal to the climate system, and from external radiative forcing. Herein, we show that predictive skill for the NAO in a very large uninitialized multi-model ensemble is commensurate with previously reported skill from a state-of-the-art initialized prediction system. The uninitialized ensemble and initialized prediction system produce similar levels of skill for northern European precipitation and North Atlantic SSTs. Identifying these predictable components becomes possible in a very large ensemble, confirming the erroneously low signal-to-noise ratio previously identified in both initialized and uninitialized climate models. Though the results here imply that external radiative forcing is a major source of predictive skill for the NAO, they also indicate that ocean initialization may be important for particular NAO events (the mid-1990s strong positive NAO), and, as previously suggested, in certain ocean regions such as the subpolar North Atlantic ocean. Overall, we suggest that improving climate models’ response to external radiative forcing may help resolve the known signal-to-noise error in climate models.


2010 ◽  
Vol 25 (2) ◽  
pp. 526-544 ◽  
Author(s):  
Carolyn A. Reynolds ◽  
James D. Doyle ◽  
Richard M. Hodur ◽  
Hao Jin

Abstract As part of The Observing System Research and Predictability Experiment (THORPEX) Pacific Asian Regional Campaign (T-PARC) and the Office of Naval Research’s (ONR’s) Tropical Cyclone Structure-08 (TCS-08) experiments, a variety of real-time products were produced at the Naval Research Laboratory during the field campaign that took place from August through early October 2008. In support of the targeted observing objective, large-scale targeting guidance was produced twice daily using singular vectors (SVs) from the Navy Operational Global Atmospheric Prediction System (NOGAPS). These SVs were optimized for fixed regions centered over Guam, Taiwan, Japan, and two regions over the North Pacific east of Japan. During high-interest periods, flow-dependent SVs were also produced. In addition, global ensemble forecasts were produced and were useful for examining the potential downstream impacts of extratropical transitions. For mesoscale models, TC forecasts were produced using a new version of the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) developed specifically for tropical cyclone prediction (COAMPS-TC). In addition to the COAMPS-TC forecasts, mesoscale targeted observing products were produced using the COAMPS forecast and adjoint system twice daily, centered on storms of interest, at a 40-km horizontal resolution. These products were produced with 24-, 36-, and 48-h lead times. The nonhydrostatic adjoint system used during T-PARC/TCS-08 contains an exact adjoint to the explicit microphysics. An adaptive response function region was used to target favorable areas for tropical cyclone formation and development. Results indicate that forecasts of tropical cyclones in the western Pacific are very sensitive to the initial state.


2009 ◽  
Vol 137 (1) ◽  
pp. 41-50 ◽  
Author(s):  
James S. Goerss

Abstract The tropical cyclone (TC) track forecasts of the Navy Operational Global Atmospheric Prediction System (NOGAPS) were evaluated for a number of data assimilation experiments conducted using observational data from two periods: 4 July–31 October 2005 and 1 August–30 September 2006. The experiments were designed to illustrate the impact of different types of satellite observations on the NOGAPS TC track forecasts. The satellite observations assimilated in these experiments consisted of feature-track winds from geostationary and polar-orbiting satellites, Special Sensor Microwave Imager (SSM/I) total column precipitable water and wind speeds, Advanced Microwave Sounding Unit-A (AMSU-A) radiances, and Quick Scatterometer (QuikSCAT) and European Remote Sensing Satellite-2 (ERS-2) scatterometer winds. There were some differences between the results from basin to basin and from year to year, but the combined results for the 2005 and 2006 test periods for the North Pacific and Atlantic Ocean basins indicated that the assimilation of the feature-track winds from the geostationary satellites had the most impact, ranging from 7% to 24% improvement in NOGAPS TC track forecasts. This impact was statistically significant at all forecast lengths. The impact of the assimilation of SSM/I precipitable water was consistently positive and statistically significant at all forecast lengths. The improvements resulting from the assimilation of AMSU-A radiances were also consistently positive and significant at most forecast lengths. There were no significant improvements/degradations from the assimilation of the other satellite observation types [e.g., Moderate Resolution Imaging Spectroradiometer (MODIS) winds, SSM/I wind speeds, and scatterometer winds]. The assimilation of all satellite observations resulted in a gain in skill of roughly 12 h for the NOGAPS 48- and 72-h TC track forecasts and a gain in skill of roughly 24 h for the 96- and 120-h forecasts. The percent improvement in these forecasts ranged from almost 20% at 24 h to over 40% at 120 h.


Nature ◽  
1908 ◽  
Vol 78 (2017) ◽  
pp. 169-170
Author(s):  
M. W. C. H.

2020 ◽  
Author(s):  
Johanna Baehr ◽  
Simon Wett ◽  
Mikhail Dobrynin ◽  
Daniela Domeisen

<p>The downward influence of the stratosphere on the troposphere can be significant during boreal winter when the polar vortex is most variable, when major circulation changes in the stratosphere can impact the tropospheric flow. These strong and weak vortex events, the latter also referred to as Sudden Stratospheric Warmings (SSWs), are capable of influencing the tropospheric circulation down to the sea level on timescales from weeks to months. Thus, the occurrence of stratospheric polar vortex events influences the seasonal predictability of sea level pressure (SLP), which is, over the Atlantic sector, strongly linked to the North Atlantic oscillation (NAO).<br>We analyze the influence of the polar vortex on the seasonal predictability of SLP in a seasonal prediction system based on the mixed resolution configuration of the coupled Max-Planck-Institute Earth System Model (MPI-ESM), where we investigate a 30 member ensemble hindcast simulation covering 1982 -2016. Since the state of the polar vortex is predictable only a few weeks or even days ahead, the seasonal prediction system cannot exactly predict the day of occurrence of stratospheric events. However, making use of the large number of stratospheric polar vortex events in the ensemble hindcast simulation, we present a statistical analysis of the influence of a correct or incorrect prediction of the stratospheric vortex state on the seasonal predictability of SLP over the North Atlantic and Europe.</p>


2021 ◽  
Author(s):  
Anna Maidens ◽  
Jeff R Knight ◽  
Adam A Scaife

<p>Many seasonal forecast systems show skill at monthly to seasonal timescales in predicting the winter North Atlantic Oscillation (NAO), the primary mode of variability in surface pressure over the North Atlantic and European sector.  This skill has practical benefit for prediction of winter conditions over Northern Europe, and arises from the representation of remote teleconnections within the prediction system, such as from the stratosphere or the tropical troposphere.  Despite skill in the NAO, most prediction systems have little skill in other patterns of North Atlantic winter circulation variability, such as East Atlantic Pattern (EAP – the second mode of regional winter surface pressure variability). This is despite the clear contribution that patterns such as the EAP make to European winter climate variability and their demonstrated role in the generation of extreme winter conditions.</p><p> </p><p>We examine the role of the tropical troposphere and extra-tropical stratosphere in driving North Atlantic and European winter circulation patterns, with a focus on teleconnections to the EAP.  We use relaxation experiments, in which a set of seasonal-length hindcasts are run with the atmospheric conditions within the relaxation region constrained to be similar to reanalysis.  These are then compared with an initialised, but otherwise freely evolving, hindcast set, and with reanalysis, in regions outside the relaxation region. The aim is to assess how better prediction of the relaxation regions would influence the skill in prediction of winter atmospheric circulation in the North Atlantic-European sector.</p><p> </p><p>We find that both regions play a role in influencing regional circulation. Tropical tropospheric relaxation in particular increases the reproduction of winter surface pressure anomalies. A key part of this improvement is in the EAP, which is very well reproduced. It is shown that forcing of the EAP occurs via propagating Rossby waves linked to convective anomalies in the tropical Atlantic. In addition, we find that teleconnections from either the tropics or stratosphere lead to reproduction of observed large-scale surface pressure patterns in most winters.  In contrast, the diagnosed response to tropical forcing is rarely matched in the hindcast without relaxation, despite a similar rate of matches with the response to stratospheric forcing. This suggests that while winter stratospheric influences are well represented in the prediction system, tropical influences are under-represented.  The results suggest that the improvement of tropical Atlantic predictability could lead to improvements for European winter predictability, and should be an important focus for future work.</p>


Sign in / Sign up

Export Citation Format

Share Document