scholarly journals Bharat mein teen laghu akshaansh kendron ke oopar ozone ke oordhvaadhar vitaran kee ozone sonde aankadon ke dvaara pradarshit pravrtti

MAUSAM ◽  
2021 ◽  
Vol 67 (2) ◽  
pp. 475-478
Author(s):  
Sunil Kumar Peshin ◽  
Sidharth Singh ◽  
D. K. Chakarborty

This study examines the trends in the vertical distribution of ozone over three low latitude stations in India. The stations are Delhi (28° N, 77° E), Pune (18° N, 74° E) and Thiruvananthapuram (8° N, 76° E) lying in the almost same longitude belt (74-77°) but separated by10o latitude. The balloon ozonesonde data of 45 years (1969 – 2012) have been analyzed. It has been found that ozone trends at different altitudes are different for three stations. The peak value and the altitude of peak value vary from year to year. This is due to solar UV-B variation.  

2020 ◽  
Vol 13 (4) ◽  
pp. 1937-1952 ◽  
Author(s):  
Astrid Lampert ◽  
Falk Pätzold ◽  
Magnus O. Asmussen ◽  
Lennart Lobitz ◽  
Thomas Krüger ◽  
...  

Abstract. The combination of two well-established methods, of quadrocopter-borne air sampling and methane isotopic analyses, is applied to determine the source process of methane at different altitudes and to study mixing processes. A proof-of-concept study was performed to demonstrate the capabilities of quadrocopter air sampling for subsequently analysing the methane isotopic composition δ13C in the laboratory. The advantage of the system compared to classical sampling on the ground and at tall towers is the flexibility concerning sampling location, and in particular the flexible choice of sampling altitude, allowing the study of the layering and mixing of air masses with potentially different spatial origin of air masses and methane. Boundary layer mixing processes and the methane isotopic composition were studied at Polder Zarnekow in Mecklenburg–West Pomerania in the north-east of Germany, which has become a strong source of biogenically produced methane after rewetting the drained and degraded peatland. Methane fluxes are measured continuously at the site. They show high emissions from May to September, and a strong diurnal variability. For two case studies on 23 May and 5 September 2018, vertical profiles of temperature and humidity were recorded up to an altitude of 650 and 1000 m, respectively, during the morning transition. Air samples were taken at different altitudes and analysed in the laboratory for methane isotopic composition. The values showed a different isotopic composition in the vertical distribution during stable conditions in the morning (delta values of −51.5 ‰ below the temperature inversion at an altitude of 150 m on 23 May 2018 and at an altitude of 50 m on 5 September 2018, delta values of −50.1 ‰ above). After the onset of turbulent mixing, the isotopic composition was the same throughout the vertical column with a mean delta value of −49.9 ± 0.45 ‰. The systematically more negative delta values occurred only as long as the nocturnal temperature inversion was present. During the September study, water samples were analysed as well for methane concentration and isotopic composition in order to provide a link between surface and atmosphere. The water samples reveal high variability on horizontal scales of a few tens of metres for this particular case. The airborne sampling system and consecutive analysis chain were shown to provide reliable and reproducible results for two samples obtained simultaneously. The method presents a powerful tool for distinguishing the source process of methane at different altitudes. The isotopic composition showed clearly depleted delta values directly above a biological methane source when vertical mixing was hampered by a temperature inversion, and different delta values above, where the air masses originate from a different footprint area. The vertical distribution of methane isotopic composition can serve as tracer for mixing processes of methane within the atmospheric boundary layer.


Tellus B ◽  
2011 ◽  
Vol 63 (1) ◽  
Author(s):  
Abhay Devasthale ◽  
Michael Tjernström ◽  
Karl-Göran Karlsson ◽  
Manu Anna Thomas ◽  
Colin Jones ◽  
...  

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Katie E. Miles ◽  
Bryn Hubbard ◽  
Evan S. Miles ◽  
Duncan J. Quincey ◽  
Ann V. Rowan ◽  
...  

AbstractSurface melting of High Mountain Asian debris-covered glaciers shapes the seasonal water supply to millions of people. This melt is strongly influenced by the spatially variable thickness of the supraglacial debris layer, which is itself partially controlled by englacial debris concentration and melt-out. Here, we present measurements of deep englacial debris concentrations from debris-covered Khumbu Glacier, Nepal, based on four borehole optical televiewer logs, each up to 150 m long. The mean borehole englacial debris content is ≤ 0.7% by volume in the glacier’s mid-to-upper ablation area, and increases to 6.4% by volume near the terminus. These concentrations are higher than those reported for other valley glaciers, although those measurements relate to discrete samples while our approach yields a continuous depth profile. The vertical distribution of englacial debris increases with depth, but is also highly variable, which will complicate predictions of future rates of surface melt and debris exhumation at such glaciers.


2021 ◽  
Vol 42 (17) ◽  
pp. 6421-6436
Author(s):  
Sourita Saha ◽  
Som Sharma ◽  
K. Niranjan Kumar ◽  
Prashant Kumar ◽  
Vaidehi Joshi ◽  
...  

1983 ◽  
Vol 40 (5) ◽  
pp. 637-643 ◽  
Author(s):  
C. W. Pugsley ◽  
H. B. N. Hynes

A freeze-coring device using liquid nitrogen is described, which enables one person to take a columnar core, extending from the surface to at least 50 cm below a stony streambed. An experiment to validate the technique showed that animals did not flee from the advance of the freezing-front. Using frozen streambed cores, the vertical distribution of benthic invertebrates of two streams in southern Ontario was investigated. In contrast to previous estimates,~70% of the fauna was found in the top 10 cm of the streambed, and invertebrate densities were often lower by an order of magnitude. These differences are attributed to problems of quantifying previous sampling methods.


Sign in / Sign up

Export Citation Format

Share Document