freeze core
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 5)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 18 (13) ◽  
pp. 4039-4058
Author(s):  
Timea Katona ◽  
Benjamin Silas Gilfedder ◽  
Sven Frei ◽  
Matthias Bücker ◽  
Adrian Flores-Orozco

Abstract. Biogeochemical hotspots are defined as areas where biogeochemical processes occur with anomalously high reaction rates relative to their surroundings. Due to their importance in carbon and nutrient cycling, the characterization of hotspots is critical for predicting carbon budgets accurately in the context of climate change. However, biogeochemical hotspots are difficult to identify in the environment, as methods for in situ measurements often directly affect the sensitive redox-chemical conditions. Here, we present imaging results of a geophysical survey using the non-invasive induced polarization (IP) method to identify biogeochemical hotspots of carbon turnover in a minerotrophic wetland. To interpret the field-scale IP signatures, geochemical analyses were performed on freeze-core samples obtained in areas characterized by anomalously high and low IP responses. Our results reveal large variations in the electrical response, with the highest IP phase values (> 18 mrad) corresponding to high concentrations of phosphates (> 4000 µM), an indicator of carbon turnover. Furthermore, we found a strong relationship between the electrical properties resolved in IP images and the dissolved organic carbon. Moreover, analysis of the freeze core reveals negligible concentrations of iron sulfides. The extensive geochemical and geophysical data presented in our study demonstrate that IP images can track small-scale changes in the biogeochemical activity in peat and can be used to identify hotspots.


2021 ◽  
Author(s):  
Timea Katona ◽  
Benjamin Silas Gilfedder ◽  
Sven Frei ◽  
Matthias Bücker ◽  
Adrian Flores-Orozco

Abstract. Biogeochemical hot spots are defined as areas where biogeochemical processes occur with anomalously high reaction rates relative to their surroundings. Due to their importance in carbon and nutrient cycling, characterization of hot spots is critical to accurately predict carbon budgets in the context of climate change. However, biogeochemical hot spots are difficult to identify in the environment, as sampling resolutions are often too coarse to find these areas in the subsurface. Here, we present imaging results of a geophysical survey using the non-invasive induced polarization (IP) method to identify biogeochemical hot spots of carbon turnover in a minerotrophic wetland. To interpret the field-scale IP signatures, geochemical analyses were performed on freeze-core samples obtained in areas characterized by anomalously high and low IP responses. Our results reveal large variations in the electrical response, with the highest IP phase values (> 20 mrad) corresponding with high concentrations of phosphates (> 4000 μM), an indicator of carbon turnover. Moreover, analysis of the freeze core reveal negligible concentrations of iron sulfides. The extensive geochemical and geophysical data presented in our study demonstrates that IP images can assess changes in the biogeochemical activity in peat, and identify hot spots.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1055 ◽  
Author(s):  
Christoph Hauer ◽  
Patrick Holzapfel ◽  
Peter Flödl ◽  
Beatrice Wagner ◽  
Wolfram Graf ◽  
...  

The present case study deals with a controlled drawdown beyond the operational level of the Gepatsch reservoir (Austria). Based on the awareness of potential ecological consequences, an advanced set of measures was conducted and an integrative monitoring design was implemented. This pre- and post-event monitoring included measurements regarding the cross sectional variability and habitat-related turbidity, freeze-core sampling to obtain knowledge on fine sediment infiltration and an evaluation of the macroinvertebrate communities as well as fish egg development (salmonid incubation). The results of the sedimentological as well as biological investigations show a negligible impact on the downstream located aquatic system due to the controlled drawdown of the Gepatsch reservoir. In addition, recommendations based on the findings from this study regarding possible methods for local scale monitoring can be given.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4850 ◽  
Author(s):  
Melody J. Gavel ◽  
R. Timothy Patterson ◽  
Nawaf A. Nasser ◽  
Jennifer M. Galloway ◽  
Bruce W. Hanna ◽  
...  

Frame Lake, located within the city of Yellowknife, Northwest Territories, Canada, has been identified as requiring significant remediation due to its steadily declining water quality and inability to support fish by the 1970s. Former gold mining operations and urbanization around the lake have been suspected as probable causes for the decline in water quality. While these land-use activities are well documented, little information is available regarding their impact on the lake itself. For this reason, Arcellinida, a group of shelled protozoans known to be reliable bioindicators of land-use change, were used to develop a hydroecological history of the lake. The purpose of this study was to use Arcellinida to: (1) document the contamination history of the lake, particularly related to arsenic (As) associated with aerial deposition from mine roaster stacks; (2) track the progress of water quality deterioration in Frame Lake related to mining, urbanization and other activities; and (3) identify any evidence of natural remediation within the lake. Arcellinida assemblages were assessed at 1-cm intervals through the upper 30 cm of a freeze core obtained from Frame Lake. The assemblages were statistically compared to geochemical and loss-on-ignition results from the core to document the contamination and degradation of conditions in the lake. The chronology of limnological changes recorded in the lake sediments were derived from 210Pb, 14C dating and known stratigraphic events. The progress of urbanization near the lake was tracked using aerial photography. Using Spearman correlations, the five most significant environmental variables impacting Arcellinida distribution were identified as minerogenics, organics, As, iron and mercury (p < 0.05; n = 30). Based on CONISS and ANOSIM analysis, three Arcellinida assemblages are identified. These include the Baseline Limnological Conditions Assemblage (BLCA), ranging from 17–30 cm and deposited in the early Holocene >7,000 years before present; the As Contamination Assemblage (ACA), ranging from 7–16 cm, deposited after ∼1962 when sedimentation began in the lake again following a long hiatus that spanned to the early Holocene; and the Eutrophication Assemblage (EA), ranging from 1–6 cm, comprised of sediments deposited after 1990 following the cessation of As and other metal contaminations. The EA developed in response to nutrient-rich waters entering the lake derived from the urbanization of the lake catchment and a reduction in lake circulation associated with the development at the lake outlet of a major road, later replaced by a causeway with rarely open sluiceways. The eutrophic condition currently charactering the lake—as evidenced by a population explosion of eutrophication indicator taxa Cucurbitella tricuspis—likely led to a massive increase in macrophyte growth and winter fish-kills. This ecological shift ultimately led to a system dominated by Hirudinea (leeches) and cessation of the lake as a recreational area.


2016 ◽  
Vol 33 ◽  
pp. 135-142 ◽  
Author(s):  
Dongyu Wu ◽  
Jianming Peng ◽  
Mingze Sun ◽  
Qing Gao ◽  
Xinxin Zhang ◽  
...  

2015 ◽  
Vol 527 ◽  
pp. 133-141 ◽  
Author(s):  
Daniel Strasser ◽  
Hermann-Josef Lensing ◽  
Thomas Nuber ◽  
Dominik Richter ◽  
Simon Frank ◽  
...  

Phytotaxa ◽  
2013 ◽  
Vol 127 (1) ◽  
pp. 128 ◽  
Author(s):  
SCOTT W. STARRATT ◽  
R. SCOTT ANDERSON

Swamp Lake, Yosemite National Park, is the only known lake in California containing long sequences of varved sediments and thus has the potential to provide a high-resolution record of climate variability. This preliminary analysis of the diatom assemblages from a 947-cm-long composite sediment core (freeze core FZ02–05; 0–67 cm, Livingstone core 02–05; 53–947 cm) shows that the lake has been freshwater, oligotrophic, and circumneutral to alkaline throughout its ~16,000-year-long history. The first sediments deposited in the lake show that the vegetation in the watershed was sparse, allowing organic matter-poor silt and clay to be deposited in the basin. The basin filled quickly to a depth of at least 5 m and remained at least that deep for most of the sediment record. Several short intervals provided evidence of large fluctuations in lake level during the Holocene. The upper 50 cm of the core contains evidence of the Medieval Climate Anomaly and Little Ice Age.


Sign in / Sign up

Export Citation Format

Share Document