Effects of Exercise on Blood Pressure and Attack of Cerebrovascular Lesions of Stroke-prone Spontaneously Hypertensive Rats (SHRSP)

Author(s):  
Shuichi Kunii ◽  
Yoshiro Fukuda ◽  
Kazuo Wakabayashi ◽  
Hiroyuki Fumino ◽  
Koichi Hirota ◽  
...  
1986 ◽  
Vol 61 (1) ◽  
pp. 318-324 ◽  
Author(s):  
J. M. Overton ◽  
C. M. Tipton ◽  
R. D. Matthes ◽  
J. R. Leininger

To determine whether voluntary exercise would lower resting blood pressure in spontaneously hypertensive rats (SHR) and stroke-prone spontaneously hypertensive rats (SP-SHR), two separate but interrelated investigations were undertaken. The studies were initiated when the animals were 28–35 days of age and after they were assigned to either activity or sedentary cages. The activity cages were connected to transducers and recorders that allowed the monitoring and calculation of frequency, duration, and running speed. The SHR group ran 3–7 km/day intermittently for 12 wk at high speeds (48–68 m/min), which resulted in heart rates in excess of 500 beats/min. When the SHR exercised, they seldom exceeded 33 revolutions/bout (37 m) with the majority being less than 22 revolutions/bout. This type of exercise training significantly lowered, but did not normalize, resting blood pressure by approximately 20 mmHg [nontrained (NT) = 185 +/- 5; trained (T) = 163 +/- 5 mmHg] while increasing maximum O2 consumption (VO2max) (NT = 78 +/- 2.6; T = 95 +/- 2.2 ml X min-1 X kg-1) and endurance run time (NT = 62 +/- 9.0; T = 286 +/- 15.0 min), respectively. Although SP-SHR exhibited comparable patterns of voluntary activity, the effects were not similar. First, after approximately 5 wk of consuming a special Japanese rat chow and a 1% NaCl drinking solution, cerebrovascular lesions occurred and deaths ultimately resulted in both exercising and sedentary groups. Second, although there was statistical evidence for a training effect (higher VO2max, longer VO2 test run times), voluntary exercise had no advantage in either male or female runners in lowering resting blood pressures or in improving their life-spans. Whereas voluntary activity wheel exercise or moderate forced treadmill exercise will lower resting blood pressures in young SHR populations, similar generalizations cannot be made with young SP-SHR rats.


1991 ◽  
Vol 81 (1) ◽  
pp. 107-112 ◽  
Author(s):  
K. Fujito ◽  
M. Yokomatsu ◽  
N. Ishiguro ◽  
H. Numahata ◽  
Y. Tomino ◽  
...  

1. The purpose of this study was to determine the effect of dietary Ca2+ intake on blood pressure and erythrocyte Na+ transport in spontaneously hypertensive rats. 2. Spontaneously hypertensive rats and Wistar-Kyoto rats were fed diets with three different Ca2+ contents, 0.1% (low-Ca2+ diet), 0.6% (normal-Ca2+ diet) and 4.0% (high-Ca2+ diet), between 6 and 20 weeks of age. At 20 weeks of age, the levels of erythrocyte Na+ efflux, as well as Na+ and K+ contents in erythrocytes, were measured. 3. On the low-Ca2+ diet, spontaneously hypertensive rats showed an enhancement of hypertension. Conversely, on the high-Ca2+ diet, they showed an attenuation of the increase in blood pressure. Spontaneously hypertensive rats had a lower erythrocyte Na+ content and increased activity of the Na+ pump at higher levels of dietary Ca2+. Passive Na+ permeability and Na+-K+ co-transport were similar in spontaneously hypertensive rats on the low-, normal- and high-Ca2+ diets. There were no significant differences in blood pressure and in Na+ pump activity in WKY on the three different diets. 4. It is concluded that dietary Ca2+ might affect the regulation of blood pressure in spontaneously hypertensive rats by changing the activity of Na+ pump in the cell membrane.


Sign in / Sign up

Export Citation Format

Share Document