Study of Possibility of Simulation of Thick Turbulent Boundary Layer on a Flat Plate of Limited Length

2012 ◽  
Vol 7 (3) ◽  
pp. 44-56
Author(s):  
Vladimir Kornilov

The experiments directed to the study of possibility of simulation of thick equilibrium (according to Clauser) incompressible turbulent boundary layer on a flat plate of limited length have been performed. It is shown that the artificial generators manufactured from circular cylinders (pins) of adjustable height h, which were mounted normal to the wall in a staggered order in two rows in х in vicinity of the plate leading edge are quite effective means of artificial boundary layer thickening. In most cases both the averaged and fluctuation boundary-layer characteristics at a downstream distance about 530 cylinder diameters have values typical for naturally-developed turbulent boundary layer. Mean velocity profiles in the artificially thickened boundary layer taken in wall-law variables are approximated with a good accuracy by the wellknown velocity law valid for canonic boundary layer and they are generalized by a unified dependence using empirical velocity scale

2019 ◽  
Vol 4 (1) ◽  
pp. 55-63
Author(s):  
Setyo Hariyadi S.P ◽  
Wawan Aries Widodo

Pada aliran yang melintasi suatu airfoil terdapat fenomena separasi, yakni ketika momentum aliran sudah tidak mampu lagi mengatasi adverse pressure gradien. Selanjutnya separasi ini akan diikuti dengan timbulnya daerah wake pada daerah di belakang airfoil yang mengakibatkan naiknya drag force dan menurunnya lift force. Untuk mengurangi hal tersebut maka vortex generator diletakkan pada sisi atas airfoil untuk mempercepat terbentuknya turbulent boundary layer sehingga dapat menunda separasi dan memperkecil daerah wake. Efektivitas dari vortex generator dipengaruhi oleh penempatan, ketinggian, dan interval antar vortex generator. Untuk mendapatkan hasil yang optimal, drag yang dihasilkan oleh vortex generator itu sendiri harus dikurangi. Untuk itu profil dari vortex generator yang digunakan harus sedemikian rupa sehingga drag yang dihasilkan dapat dikurangi tanpa menurunkan performasi dari airfoil tersebut. Oleh karena itu, penelitian ini dilakukan untuk melihat pengaruh penambahan vortex generator terhadap unjuk kerja airfoil melalui metode eksperimen. Tujuan penelitian ini adalah membandingkan karakteristik aliran fluida plain wing dan dengan penambahan vortex generator. Profil vortex generator yang digunakan adalah flat plate vortex generator dengan konfigurasi straight dan ditempatkan pada x/c = 10% dan 20% arah chord line dari leading edge. Variasi yang digunakan adalah bilangan Reynolds (Re), sudut serang (α) dan peletakan vortex generator pada airfoil. Kecepatan freestream yang digunakan yaitu kecepatan 12 m/s atau Re = 7,65 x 105 dan kecepatan 17 m/s atau Re = 9 x 105, dan pada sudut serang (α) 0o, 3 o, 6 o, 9 o, 12 o, 15 o, 19 o, dan 20 o. Hasil penelitian ini menunjukkan bahwa terjadi peningkatan performansi dari airfoil NACA 43018 dengan penambahan vortex generator dibandingkan dengan tanpa vortex generator. Adanya vortex generator, mempercepat perubahan dari aliran laminar ke turbulen. Separasi dapat tertunda dengan adanya vortex generator.


Author(s):  
Ladan Momayez ◽  
Marouen Dghim ◽  
Mohsen Ferchichi ◽  
Sylvain Graveline

This work reports an experimental investigation on the response of a planar wake generated by a profiled flat plate to various upstream flow conditions. A tripping wire was placed on the upper side of the flat plate just downstream of the leading edge of the plate that resulted in asymmetric separating shear layers at the trailing edge. The near wake asymmetry is compared to the symmetrical case at two different Reynolds numbers. Two asymmetric initial conditions resulted, namely, laminar boundary layer on the lower side and a turbulent boundary layer on the upper side, and a turbulent boundary layer on the lower side and tripped turbulent boundary layer on the upper surface. The near wake dynamics were investigated under the effects of the degree of asymmetry using hot-wire anemometry and flow visualizations. The measurements showed when one of the two boundary layers was tripped, the wake shifted towards the tripped side and wake spreading was found to be larger than in the case of the symmetrical wake with the effect being more pronounced in the asymmetric laminar wake. Self-similarity of the asymmetrical wakes was established by properly selecting appropriate similarity variables however, the similarity of the wake was less evident in the tripped laminar boundary layer case. Convection velocity, Uc, of the Von Karman large eddies, estimated using processed flow visualization images seemed to increase with increased Reynolds number and with increased upstream momentum thickness. In the symmetric laminar wake, Uc/U∞ increases from 0.2 and reached an asymptotic value of about 0.85 further downstream. In the presence of perturbation, Uc/U∞ attained a constant value of about 0.83 further downstream compared to the symmetric case. For the turbulent wake, however, asymmetry of the turbulence levels was found to increase the convection speed compared to both the laminar wake and the symmetric turbulent wake reaching a constant value nearly at the same downstream position for both the symmetric and asymmetric turbulent wake.


Author(s):  
Yoshifumi Jodai ◽  
Yoshikazu Takahashi ◽  
Masashi Ichimiya ◽  
Hideo Osaka

An experimental investigation has been made on a turbulent boundary layer near the trailing edge on a long flat plate. The flow was controlled by an additional splitter plate fitted to the trailing edge along the wake center line. The length of the splitter plate, l, was varied from a half, to five times the trailing edge thickness, h. Measurements of base pressure behind the trailing edge and of mean velocity and pressure distribution in the turbulent boundary layer on the flat plate were made under the freestream zero-pressure gradient. The absolute value of the base pressure coefficient of the long flat plate was considerably smaller than that of the short flat plate without the splitter plate. A significant increase in the base pressure coefficient was achieved with the splitter plate (l / h ≧ 1), fitted to the long flat plate. Within an inner layer in the turbulent boundary layer near the trailing edge, the mean velocity increased more than that in the upstream position in the case without the splitter plate. With the splitter plate, however, the base pressure rise made the mean velocity distribution more closely approach that of a fully-developed turbulent boundary layer.


1996 ◽  
Vol 118 (4) ◽  
pp. 787-794 ◽  
Author(s):  
A. C. Schwarz ◽  
M. W. Plesniak

A turbulent boundary layer subjected to multiple, additional strain rates, namely convex curvature coupled with streamwise pressure gradients (zero and favorable, ZPG and FPG) was investigated experimentally using laser Doppler velocimetry. The inapplicability of the universal flat-plate log-law to curved flows is discussed. However, a logarithmic region is found in the curved and accelerated turbulent boundary layer examined here. Similarity of the mean velocity and Reynolds stress profiles was achieved by 45 deg of curvature even in the presence of the strongest FPG investigated (k = 1.01 × 10−6). The Reynolds stresses were suppressed (with respect to flat plate values) due primarily to the effects of strong convex curvature (δo/R ≈ 0.10). In curved boundary layers subjected to different favorable pressure gradients, the mean velocity and normal Reynolds stress profiles collapsed in the inner region, but deviated in the outer region (y+ ≥ 100). Thus, inner scaling accounted for the impact of the extra strain rates on these profiles in the near-wall region. Combined with curvature, the FPG reduced the strength of the wake component, resulted in a greater suppression of the fluctuating velocity components and a reduction of the primary Reynolds shear stress throughout almost the entire boundary layer relative to the ZPG curved case.


2000 ◽  
Vol 422 ◽  
pp. 319-346 ◽  
Author(s):  
DAVID B. DE GRAAFF ◽  
JOHN K. EATON

Despite extensive study, there remain significant questions about the Reynolds-number scaling of the zero-pressure-gradient flat-plate turbulent boundary layer. While the mean flow is generally accepted to follow the law of the wall, there is little consensus about the scaling of the Reynolds normal stresses, except that there are Reynolds-number effects even very close to the wall. Using a low-speed, high-Reynolds-number facility and a high-resolution laser-Doppler anemometer, we have measured Reynolds stresses for a flat-plate turbulent boundary layer from Reθ = 1430 to 31 000. Profiles of u′2, v′2, and u′v′ show reasonably good collapse with Reynolds number: u′2 in a new scaling, and v′2 and u′v′ in classic inner scaling. The log law provides a reasonably accurate universal profile for the mean velocity in the inner region.


2014 ◽  
Vol 136 (5) ◽  
Author(s):  
Stephen A. Jordan

Even after several decades of experimental and numerical testing, our present-day knowledge of the axisymmetric turbulent boundary layer (TBL) along long thin circular cylinders still lacks a clear picture of many fundamental characteristics. The main issues causing this reside in the experimental testing complexities and the numerical simplifications. An important characteristic that is crucial for routine scaling is the boundary layer length scales, but the downstream growth of these scales (boundary layer, displacement, and momentum thicknesses) is largely unknown from the leading to trailing edges. Herein, we combine pertinent datasets with many complementary numerical computations (large-eddy simulations) to address this shortfall. We are particularly interested in expressing the length scales in terms of the radius-based and axial-based Reynolds numbers (Rea and Rex). Although the composite dataset gave an averaged shape factor H = 1.09 that is substantially lower than the planar value (H = 1.27), the shape factor distribution along the cylinder axis actually begins at the flat plate value then decays logarithmically to near unity. The integral length scales displayed power-law evolutions with variable exponents until high Rea (Rea > 35,000) where both scales then mimic streamwise consistency. Beneath this threshold, their streamwise growth is much slower than the flat plate (especially at low-Rea). The boundary layer thickness grew according to an empirical expression that is dependent on both Rea and Rex where its streamwise growth can far exceed the planar turbulent flow. These unique characteristics rank the thin cylinder axisymmetric TBL as a separate canonical flow, which was well documented by the previous investigations.


1963 ◽  
Vol 15 (3) ◽  
pp. 368-384 ◽  
Author(s):  
H. G. Hornung ◽  
P. N. Joubert

The mean velocity distribution in a low-speed three-dimensional turbulent boundary-layer flow was investigated experimentally. The experiments were performed on a large-scale model which consisted of a flat plate on which secondary flow was generated by the pressure field introduced by a circular cylinder standing on the plate. The Reynolds number based on distance from the leading edge of the plate was about 6 x 106.It was found that the wall-wake model of Coles does not apply for flow of this kind and the model breaks down in the case of conically divergent flow with rising pressure, for example, in the results of Kehl (1943). The triangular model for the yawed turbulent boundary layer proposed by Johnston (1960) was confirmed with good correlation. However, the value ofyuτ/vwhich occurs at the vertex of the triangle was found to range up to 150 whereas Johnston gives the highest value as about 16 and hence assumes that the peak lies within the viscous sublayer. Much of his analysis is based on this assumption.The dimensionless velocity-defect profile was found to lie in a fairly narrow band when plotted againsty/δ for a wide variation of other parameters including the pressure gradient. The law of the wall was found to apply in the same form as for two-dimensional flow but for a more limited range ofy.


1967 ◽  
Vol 28 (4) ◽  
pp. 803-821 ◽  
Author(s):  
T. Uzkan ◽  
W. C. Reynolds

A simple wall-turbulence interaction has been studied experimentally. In the idealized model an infinite flat plate is suddenly inserted into a pre-existing field of homogeneous isotropic turbulence, and subsequent changes in the turbulence field examined. The experiment involved passing grid-produced turbulence over a wall moving at the mean speed. Mean velocity gradients vanish in both the model and experiment, and hence production of new turbulence is absent. This allowed the inhibiting effects of the wall to be studied separately. The growth of the ‘inhomogeneity layer’ into the impressed turbulence field and other statistical features of the turbulence were measured.


1980 ◽  
Vol 31 (4) ◽  
pp. 221-237
Author(s):  
P.A. Aswatha Narayana

SummaryThe response of turbulent boundary layer to sudden change in surface roughness have been studied experimentally. Mean velocity measurements have been made in the boundary layer on a flat plate, downstream of a small step change in surface roughness under 3 different pressure gradients. The surface upstream of the step consisted of ‘k* type ‘large roughness’ wall (or ‘small roughness’ wall) and downstream of the step consisted of smooth surface (or ‘small roughness’ wall). Velocity profiles after the step change have been analysed on the basis of the two layer model. The inner region responds very quickly to the new boundary condition while the outer region takes more time to attain equilibrium or a state of local self-preservation. The skin-friction coefficient initially increased after the step change and gradually reached towards a constant value except for a particular roughness combination under adverse pressure gradient wherein the change in the roughness function is gradual over the transition.


Sign in / Sign up

Export Citation Format

Share Document