scholarly journals Karakteristik Wake Area Akibat Efek Penggunaan Vortex Generator di Belakang Wing Airfoil Naca 43018

2019 ◽  
Vol 4 (1) ◽  
pp. 55-63
Author(s):  
Setyo Hariyadi S.P ◽  
Wawan Aries Widodo

Pada aliran yang melintasi suatu airfoil terdapat fenomena separasi, yakni ketika momentum aliran sudah tidak mampu lagi mengatasi adverse pressure gradien. Selanjutnya separasi ini akan diikuti dengan timbulnya daerah wake pada daerah di belakang airfoil yang mengakibatkan naiknya drag force dan menurunnya lift force. Untuk mengurangi hal tersebut maka vortex generator diletakkan pada sisi atas airfoil untuk mempercepat terbentuknya turbulent boundary layer sehingga dapat menunda separasi dan memperkecil daerah wake. Efektivitas dari vortex generator dipengaruhi oleh penempatan, ketinggian, dan interval antar vortex generator. Untuk mendapatkan hasil yang optimal, drag yang dihasilkan oleh vortex generator itu sendiri harus dikurangi. Untuk itu profil dari vortex generator yang digunakan harus sedemikian rupa sehingga drag yang dihasilkan dapat dikurangi tanpa menurunkan performasi dari airfoil tersebut. Oleh karena itu, penelitian ini dilakukan untuk melihat pengaruh penambahan vortex generator terhadap unjuk kerja airfoil melalui metode eksperimen. Tujuan penelitian ini adalah membandingkan karakteristik aliran fluida plain wing dan dengan penambahan vortex generator. Profil vortex generator yang digunakan adalah flat plate vortex generator dengan konfigurasi straight dan ditempatkan pada x/c = 10% dan 20% arah chord line dari leading edge. Variasi yang digunakan adalah bilangan Reynolds (Re), sudut serang (α) dan peletakan vortex generator pada airfoil. Kecepatan freestream yang digunakan yaitu kecepatan 12 m/s atau Re = 7,65 x 105 dan kecepatan 17 m/s atau Re = 9 x 105, dan pada sudut serang (α) 0o, 3 o, 6 o, 9 o, 12 o, 15 o, 19 o, dan 20 o. Hasil penelitian ini menunjukkan bahwa terjadi peningkatan performansi dari airfoil NACA 43018 dengan penambahan vortex generator dibandingkan dengan tanpa vortex generator. Adanya vortex generator, mempercepat perubahan dari aliran laminar ke turbulen. Separasi dapat tertunda dengan adanya vortex generator.

2018 ◽  
Vol 3 (4) ◽  
pp. 62-70
Author(s):  
Setyo Hariyadi S.P ◽  
Wawan Aries Widodo

Perancangan pada sayap pesawat terbang bertujuan menghasilkan lift yang setinggi-tingginya dan drag yang sekecil-kecilnya. Penundaan separasi menjadi hal yang penting dan sangat mempengaruhi kinerja aerodinamika-nya. Vortex generator merupakan salah satu alat yang memiliki pengaruh signifikan terhadap performasi tersebut. Dengan penambahan vortex generator ini separasi aliran dapat tertunda dan performansi sayap dapat meningkat.Topik yang dikaji dalam penelitian ini adalah aliran pada airfoil NACA 43018 dengan penambahan vortex generator. Tujuan penelitian ini adalah untuk membandingkan karakteristik aliran fluida plain wing dan dengan penambahan vortex generator. Profil vortex generator yang digunakan adalah flat plate vortex generator dengan konfigurasi straight dan ditempatkan pada x/c = 10% dan 20% arah chord line dari leading edge. Variasi yang digunakan adalah bilangan Reynolds (Re), sudut serang (α) dan peletakan vortex generator pada airfoil. Kecepatan freestream yang digunakan yaitu kecepatan 12 m/s atau Re = 7,65 x 105 dan kecepatan 17 m/s atau Re = 9 x 105, dan pada sudut serang (α) 0o, 3 o, 6 o, 9 o, 12 o, 15 o, 19 o, dan 20 o. Parameter yang dievaluasi meliputi koefisien tekanan (Cp), profil kecepatan, gaya lift, gaya drag, dan rasio CL/CD.Hasil penelitian ini menunjukkan bahwa terjadi peningkatan performansi dari airfoil NACA 43018 dengan penambahan vortex generator dibandingkan dengan tanpa vortex generator. Adanya vortex generator, meningkatkan Turbulent Kinetic Energy dan mempercepat perubahan dari aliran laminar ke turbulen. Separasi dapat tertunda dengan adanya vortex generator.


2012 ◽  
Vol 7 (3) ◽  
pp. 44-56
Author(s):  
Vladimir Kornilov

The experiments directed to the study of possibility of simulation of thick equilibrium (according to Clauser) incompressible turbulent boundary layer on a flat plate of limited length have been performed. It is shown that the artificial generators manufactured from circular cylinders (pins) of adjustable height h, which were mounted normal to the wall in a staggered order in two rows in х in vicinity of the plate leading edge are quite effective means of artificial boundary layer thickening. In most cases both the averaged and fluctuation boundary-layer characteristics at a downstream distance about 530 cylinder diameters have values typical for naturally-developed turbulent boundary layer. Mean velocity profiles in the artificially thickened boundary layer taken in wall-law variables are approximated with a good accuracy by the wellknown velocity law valid for canonic boundary layer and they are generalized by a unified dependence using empirical velocity scale


Author(s):  
Ladan Momayez ◽  
Marouen Dghim ◽  
Mohsen Ferchichi ◽  
Sylvain Graveline

This work reports an experimental investigation on the response of a planar wake generated by a profiled flat plate to various upstream flow conditions. A tripping wire was placed on the upper side of the flat plate just downstream of the leading edge of the plate that resulted in asymmetric separating shear layers at the trailing edge. The near wake asymmetry is compared to the symmetrical case at two different Reynolds numbers. Two asymmetric initial conditions resulted, namely, laminar boundary layer on the lower side and a turbulent boundary layer on the upper side, and a turbulent boundary layer on the lower side and tripped turbulent boundary layer on the upper surface. The near wake dynamics were investigated under the effects of the degree of asymmetry using hot-wire anemometry and flow visualizations. The measurements showed when one of the two boundary layers was tripped, the wake shifted towards the tripped side and wake spreading was found to be larger than in the case of the symmetrical wake with the effect being more pronounced in the asymmetric laminar wake. Self-similarity of the asymmetrical wakes was established by properly selecting appropriate similarity variables however, the similarity of the wake was less evident in the tripped laminar boundary layer case. Convection velocity, Uc, of the Von Karman large eddies, estimated using processed flow visualization images seemed to increase with increased Reynolds number and with increased upstream momentum thickness. In the symmetric laminar wake, Uc/U∞ increases from 0.2 and reached an asymptotic value of about 0.85 further downstream. In the presence of perturbation, Uc/U∞ attained a constant value of about 0.83 further downstream compared to the symmetric case. For the turbulent wake, however, asymmetry of the turbulence levels was found to increase the convection speed compared to both the laminar wake and the symmetric turbulent wake reaching a constant value nearly at the same downstream position for both the symmetric and asymmetric turbulent wake.


2019 ◽  
Vol 4 (4) ◽  
pp. 1-9
Author(s):  
Setyo Hariyadi ◽  
Habibie Aldo putra

Pada pembuatan suatu pesawat terbang, suatu analisis sebelum terbang terhadap kinerja aerodinamika dari pesawat tersebut sangat diperlukan, terutama untuk daerah dimana metoda analitik/empirik tidak dapat menjangkaunya seperti perkiraan CLmax, karakteristik stall dan lain-lainnya. Satu hal penting yang harus diperhatikan dalam pendesainan suatu pesawat yaitu pemilihan airfoil dan modifikasinya. Modifikasi airfoil dilakukan untuk menunda separasi aliran dan meningkatkan performa airfoil, salah satunya dengan vortex generator. Hal ini dapat diindikasikan dengan tertundanya separasi aliran yang melintasi permukaan atas dari airfoil. Topik yang dikaji dalam penelitian ini adalah aliran melintasi airfoil NACA 0012 dengan penambahan vortex generator. Tujuan penelitian ini adalah untuk membandingkan karakteristik aliran fluida dengan dan tanpa penambahan vortex generator. Profil vortex generator yang digunakan adalah trapezoidal vortex generator dengan konfigurasi straight dan ditempatkan pada x/c = 20% arah chord line dari leading edge. Variasi yang digunakan adalah bilangan Reynolds (Re) dan sudut serang (α) pada airfoil. Kecepatan freestream yang digunakan yaitu kecepatan 10 m/s dan 20 m/s, pada sudut serang (α) 0°, 4°, 10°, 12°, 15°,dan 17°. Dari penelitian ini didapatkan performa aerodinamika dan fenomena aliran di sekitar airfoil. Perihal ini ada peningkatan performa aerodinamika pesawat dari sudut serang 0° sampai sudut serang 12° terbukti dengan meningkatnya kecepatan transisi dari laminar boundary layer menjadi turbulent boundary layer.


Author(s):  
Siti Aisyah Ayudia ◽  
Artoto Arkundato ◽  
Lutfi Rohman

The lift force is one of the important factors in supporting the aircraft flying capabilities. The airplane has a section called the aircraft wing. In particular, the wing section of aircraft is called the airfoil. One of the efforts to increase the lift force is to make the flow of air fluid at the top of the airfoil more turbulent. Turbulent flow can attract momentum from the boundary layer, the result of this momentum transfer has energy that is more resistant to the adverse pressure gradient which can trigger the flow separation. Efforts that can be made to reduce separation flow and increase lift force are the addition of a turbulent generator on the upper surface of the airfoil, one type of turbulent generator is a vortex generator, a vortex generator can accelerate the transition from the laminar boundary layer to the turbulent boundary layer. This study was conducted with the aim of knowing the effect of the vortex generator on the aerodynamics of NACA-4412 using the computational fluid dynamics method. The main thing that will be investigated is the effect of the straight type vortex generator application on the lift coefficient, by comparing the plain airfoil and airfoil that has been applied to the vortex generator to vary the angle of attack. The variation of the angles of attack are 0º, 5º, 10º, 15º and the placement of the vortex generator is 24% of the leading edge. The results obtained that the lift coefficient changes with increasing angle of attack and the application of a vortex generator to an airfoil can increase the lift coefficient than a plain airfoil. The optimum increase in lift coefficient is at the angle of attack of 5º as much as 13%.


2019 ◽  
Vol 4 (3) ◽  
pp. 67-77
Author(s):  
Setyo Hariyadi Suranto Putro ◽  
Achmad Setiyo Prabowo

Pesawat terbang merupakan aplikasi ilmu mekanika fluida yang sangat memperhatikan aspek aerodinamika karena berkaitan dengan performa pada penerbangan. Satu hal penting yang harus diperhatikan dalam pendesainan suatu pesawat yaitu pemilihan airfoil dan modifikasinya. Modifikasi airfoil dilakukan untuk menunda separasi aliran dan meningkatkan performa airfoil, salah satunya dengan vortex generator. Modifikasi pada airfoil dilakukan untuk meningkatkan performansi dari airfoil. Hal ini dapat diindikasikan dengan tertundanya separasi aliran yang melintasi permukaan atas dari airfoil. Dengan tertundanya separasi ini maka gaya lift akan semakin besar dan gaya drag akan semakin kecil. Penelitian sebelumnya menunjukkan bahwa penambahan vortex generator pada permukaan atas airfoil dapat menunda terjadinya separasi aliran. Hal ini disebabkan aliran lebih tahan melawan gaya gesek dan adverse pressure gradient. Topik yang dikaji dalam penelitian ini adalah aliran melintasi airfoil NACA 43018 dengan penambahan vortex generator. Airfoil NACA 43018 digunakan pada sayap pesawat terbang ATR 72. Tujuan penelitian ini adalah untuk membandingkan karakteristik aliran fluida dengan dan tanpa penambahan vortex generator. Profil vortex generator yang digunakan adalah flat plate vortex generator dengan konfigurasi straight dan ditempatkan pada x/c = 10% dan 20% arah chord line dari leading edge. Variasi yang digunakan adalah bilangan Reynolds (Re) dan sudut serang (α) pada airfoil. Kecepatan freestream yang digunakan yaitu kecepatan 12 m/s atau Re = 7,65 x 105 dan kecepatan 17 m/s atau Re = 9 x 105, dan pada sudut serang (α) 0o, 3o, 6o, 9o, 12o, 15o, 19o, dan 20o. Parameter yang dievaluasi meliputi koefisien tekanan (Cp), profil kecepatan, gaya lift, gaya drag, dan rasio CL/CD. Hasil penelitian ini menunjukkan bahwa terjadi peningkatan performansi dari airfoil NACA 43018 dengan penambahan vortex generator dibandingkan dengan tanpa vortex generator. Adanya vortex generator, dapat menunda terjadinya separasi. Dengan penambahan vortex generator terjadi peningkatan gaya lift sekitar 5% dan menaikkan gaya drag sekitar 1,5%. Rasio CL/CD meningkat sekitar 5 %.


Author(s):  
Nicholas F. Jones ◽  
John C. Vaccaro ◽  
David M. Rooney

An experimental study was undertaken to investigate the influence of leading edge geometry and of relative curvature on the formation of a boundary layer on the surface of a cylinder aligned axially in a uniform flow. Hot wire anemometry was used to measure mean and fluctuating velocity components at a number of axial locations from the leading edge of cylinders of three different relative curvatures and two different leading edge shapes. In all cases a minimum relative axial length of greater than ten radii was examined, hence allowing adequate inspection of the formation region. Six cylinders were employed in the study, three with a blunt leading edge, and three with an ellipsoid of 3:1 ratio leading to the constant radius length. The Reynolds number based on cylinder radius (Rea = Uoa/v) varied from 3000 ≤ Rea ≤ 9000. The elliptical leading edge cylinders experienced laminar boundary layers, and the blunt cylinders created a separated bubble region followed by the development of a turbulent boundary layer. The laminar boundary layer was smaller than what a flat plate would produce at a corresponding length, and its experimental data generated profiles could be universalized with previously developed similarity variables. The turbulent boundary layer assumed a nearly constant velocity profile in the region 10 ≤ x/a ≤ 40, and its height grew proportionally to x1/3 rather than to x4/5 as for a flat plate. Streamwise turbulence intensities diminished rapidly with vertical distance from the surface of the cylinder, and also assumed a constant profile as relative axial distance increased. Over the limited range examined, changes in curvature were of secondary importance on relative boundary layer growth.


2018 ◽  
Vol 3 (3) ◽  
pp. 36-43
Author(s):  
Setyo Hariyadi S.P ◽  
Wawan Aries Widodo ◽  
Bambang Junipitoyo ◽  
Wiwid Suryono ◽  
Supriadi Supriadi

Pesawat terbang merupakan aplikasi ilmu mekanika fluida yang sangat memperhatikan aspek aerodinamika karena berkaitan dengan performa pada penerbangan. Satu hal penting yang harus diperhatikan dalam pendesainan suatu pesawat yaitu pemilihan airfoil dan modifikasinya. Modifikasi airfoil dilakukan untuk menunda separasi aliran dan meningkatkan performa airfoil, salah satunya dengan vortex generator. Modifikasi pada airfoil dilakukan untuk meningkatkan performansi dari airfoil. Hal ini dapat diindikasikan dengan tertundanya separasi aliran yang melintasi permukaan atas dari airfoil. Dengan tertundanya separasi ini maka gaya lift akan semakin besar dan gaya drag akan semakin kecil. Penelitian sebelumnya menunjukkan bahwa penambahan vortex generator pada permukaan atas airfoil dapat menunda terjadinya separasi aliran. Hal ini disebabkan aliran lebih tahan melawan gaya gesek dan adverse pressure gradient. Topik yang dikaji dalam penelitian ini adalah aliran melintasi airfoil NACA 43018 dengan penambahan vortex generator. Airfoil NACA 43018 digunakan pada sayap pesawat terbang ATR 72. Tujuan penelitian ini adalah untuk membandingkan karakteristik aliran fluida dengan dan tanpa penambahan vortex generator. Profil vortex generator yang digunakan adalah rectangular flat plate vortex generator dengan konfigurasi straight dan ditempatkan pada x/c = 10% dan 20% arah chord line dari leading edge. Variasi yang digunakan adalah bilangan Reynolds (Re) dan sudut serang (α) pada airfoil. Kecepatan freestream yang digunakan yaitu kecepatan 12 m/s atau Re = 7,65 x 105 dan kecepatan 17 m/s atau Re = 9 x 105, dan pada sudut serang (α) 0o, 3o, 6o, 9o, 12o, 15o, 19o, dan 20o. Parameter yang dievaluasi meliputi koefisien tekanan (Cp), profil kecepatan, lift, drag, dan rasio CL/CD. Hasil penelitian ini menunjukkan bahwa terjadi peningkatan performansi dari airfoil NACA 43018 dengan penambahan vortex generator dibandingkan dengan tanpa vortex generator. Adanya vortex generator, dapat menunda terjadinya separasi. Dengan penambahan vortex generator terjadi peningkatan lift sekitar 5% dan menaikkan drag sekitar 1,5%. Rasio CL/CD meningkat sekitar 5 %.


Sign in / Sign up

Export Citation Format

Share Document