Genotypic Characterization of Rhizopus Spp. Tempeh and Usar: Traditional Inoculum of Tempeh in Indonesia

2020 ◽  
Vol 14 (3) ◽  
pp. 3
Author(s):  
Tati Barus ◽  
Jason Wiranata Sanjaya ◽  
Anastasia Tatik Hartanti ◽  
Adi Yulandi ◽  
Vivitri Dewi Prasasty ◽  
...  

Abstract. Soybeans tempeh (tempeh) is processed by fermentation using Rhizopus spp. Tempeh is an important source of protein in Indonesia. The traditional inoculum in fermentation locally is known as Usar which is made from the leaves of Hibiscus tiliaceus. However, Rhizopus information from Usar is still limited. Therefore, this study aims to identify and investigate the genetic diversity of Rhizopus species from Usar and tempeh based on the Internal Transcribed Spacer (ITS) sequence and the Random Amplified Polymorphic DNA (RAPD) markers. Twenty-three Rhizopus strains were isolated from Usar and ten Rhizopus strains were isolated from tempeh. Based on ITS sequences, the isolates were similar to R Rhizopus microsporus (30 isolates) and Rhizopus delemar (3 isolates) with 98-99% similarity. The genetics of R. microsporus and R. delemar are varied and different from the genetics of R. microsporus from tempeh. The growth temperature of R. microsporus varies from 33 to 48°C and R. delemar can grow to a maximum at 33°C. The role of R. microsporus and R. delemar from Usar in determining the quality of tempeh is still limited. Therefore, it needs to be investigated further.

2019 ◽  
Vol 20 (3) ◽  
pp. 847-852
Author(s):  
TATI BARUS ◽  
RONALDO HALIM ◽  
ANASTASIA TATIK HARTANTI ◽  
PAULUS KEVIN SAPUTRA

Abstract. Barus T, Halim R, Hartanti AT, Saputra PK. 2019. Genetic diversity of Rhizopus microsporus from traditional inoculum of tempeh in Indonesia based on ITS sequences and RAPD marker. Biodiversitas 20: 847-852. The main microorganism for tempeh fermentation is Rhizopus microsporus. These days, many tempeh producers use commercial inoculum, such as ‘Raprima’ as resource of R. microsporus. As a result, the genetic diversity of R. microsporus that had been reported in Indonesia has diminished. Information about genetic diversity is needed as a basis to select R. microsporus as tempeh inoculum. This research aims to investigate the genetic diversity of R. microsporus from waru leaves based on Internal Transcribed Spacer (ITS) Sequence and Random Amplified Polymorphic DNA (RAPD) markers. A total of 25 R. microsporus were isolated from traditional inoculum waru leaves (Inoculum 1) and traditional inoculum other than waru leaves (Inoculum 2). Amplification of ITS sequence was done using universal primer pairs of ITS-4 and ITS-5. Amplification of RAPD markers was done using primers OPC-08, OPC-19, OPQ-6, R-108, OPA-09 and OPJ-20. ITS sequence was not sufficient to compare the similarities among R. microsporus. On the other hand, RAPD markers successfully compared the similarities among 25 R. microsporus. A total of 25 R. microsporus were divided into 9 clusters. R. microsporus from Inoculum 1 grouped into Cluster 1, Cluster 3 and Cluster 4-8. Inoculum 2 grouped into Cluster 2 and Cluster 9. R. microsporus from tempeh grouped into Cluster 4 and was different from Inoculum 1 and Inoculum 2, except for TB3.


2013 ◽  
Vol 13 (2) ◽  
pp. 73-78
Author(s):  
Jarina Joshsi ◽  
Lumanti Manandhar ◽  
Patima Shrestha ◽  
Rani Gupta ◽  
Rojlina Manadhar ◽  
...  

Random amplified polymorphic DNA (RAPD) markers were used to study genetic diversity in dog samples belonging to populations of German Shepherd and Japanese Spitz. A total of twelve samples were typed using eight RAPD primers. Out of eight primers, three primers gave result in six individuals of dogs. The phylogenetic tree constructed by the neighbor joining method based on Nei. Original measures revealed highest genetic identity found in German Shepherd as 0.9444 and highest genetic distance as 1.2809. The analysis predicts the number of polymorphic loci as 15 and the percentage of polymorphic loci as 83.3. Nepal Journal of Science and Technology Vol. 13, No. 2 (2012) 73-78 DOI: http://dx.doi.org/10.3126/njst.v13i2.7717


HortScience ◽  
2018 ◽  
Vol 53 (5) ◽  
pp. 613-619 ◽  
Author(s):  
Ghazal Baziar ◽  
Moslem Jafari ◽  
Mansoureh Sadat Sharifi Noori ◽  
Samira Samarfard

Ficus carica L. is one of the most ancient fruit trees cultivated in Persia (Iran). The conservation and characterization of fig genetic resources is essential for sustainable fig production and food security. Given these considerations, this study characterizes the genetic variability of 21 edible F. carica cultivars in the Fars Province using random amplified polymorphic DNA (RAPD) markers. The collected cultivars were also characterized for their morphological features. A total of 16 RAPD primers produced 229 reproducible bands, of which, 170 loci (74.43%) were polymorphic with an average polymorphic information content (PIC) value of 0.899. Genetic analysis using an unweighted pair-group method with arithmetic averaging (UPGMA) revealed genetic structure and relationships among the local germplasms. The dendrogram resulting from UPGMA hierarchical cluster analysis separated the fig cultivars into five groups. These results demonstrate that analysis of molecular variance allows for the partitioning of genetic variation between fig groups and illustrates greater variation within fig groups and subgroups. RAPD-based classification often corresponded with the morphological similarities and differences of the collected fig cultivars. This study suggests that RAPD markers are suitable for analysis of diversity and cultivars’ fingerprinting. Accordingly, understanding of the genetic diversity and population structure of F. carica in Iran may provide insight into the conservation and management of this species.


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
YH Kim ◽  
JA Ryuk ◽  
BS Ko ◽  
JW Lee ◽  
SE Oh ◽  
...  

Author(s):  
Piero Sciavilla ◽  
Francesco Strati ◽  
Monica Di Paola ◽  
Monica Modesto ◽  
Francesco Vitali ◽  
...  

Abstract Studies so far conducted on irritable bowel syndrome (IBS) have been focused mainly on the role of gut bacterial dysbiosis in modulating the intestinal permeability, inflammation, and motility, with consequences on the quality of life. Limited evidences showed a potential involvement of gut fungal communities. Here, the gut bacterial and fungal microbiota of a cohort of IBS patients have been characterized and compared with that of healthy subjects (HS). The IBS microbial community structure differed significantly compared to HS. In particular, we observed an enrichment of bacterial taxa involved in gut inflammation, such as Enterobacteriaceae, Streptococcus, Fusobacteria, Gemella, and Rothia, as well as depletion of health-promoting bacterial genera, such as Roseburia and Faecalibacterium. Gut microbial profiles in IBS patients differed also in accordance with constipation. Sequence analysis of the gut mycobiota showed enrichment of Saccharomycetes in IBS. Culturomics analysis of fungal isolates from feces showed enrichment of Candida spp. displaying from IBS a clonal expansion and a distinct genotypic profiles and different phenotypical features when compared to HS of Candida albicans isolates. Alongside the well-characterized gut bacterial dysbiosis in IBS, this study shed light on a yet poorly explored fungal component of the intestinal ecosystem, the gut mycobiota. Our results showed a differential fungal community in IBS compared to HS, suggesting potential for new insights on the involvement of the gut mycobiota in IBS. Key points • Comparison of gut microbiota and mycobiota between IBS and healthy subjects • Investigation of cultivable fungi in IBS and healthy subjects • Candida albicans isolates result more virulent in IBS subjects compared to healthy subjects


Genome ◽  
2001 ◽  
Vol 44 (6) ◽  
pp. 995-999 ◽  
Author(s):  
H I Amadou ◽  
P J Bebeli ◽  
P J Kaltsikes

Random amplified polymorphic DNA (RAPD) markers were used to assess genetic diversity in Bambara groundnut (Vigna subterranea L.) germplasm using 25 African accessions from the collection in the International Institute for Tropical Agriculture, Ibadan, Nigeria. Fifty random decamer primers were screened to assess their ability to detect polymorphism in bambara; 17 of them were selected for this study. Considerable genetic diversity was found among the V. subterranea accessions studied. The relationships among the 25 accessions were studied by cluster analysis. The dendrograms showed two main groups of accessions mainly along the lines of their geographic origin. It is concluded that RAPD can be used for germplasm classification in bambara groundnut and hence for improving this crop.Key words: germplasm, PCR, RAPD, Vigna subterranea.


Genome ◽  
1995 ◽  
Vol 38 (2) ◽  
pp. 201-210 ◽  
Author(s):  
F. N. Wachira ◽  
R. Waugh ◽  
W. Powell ◽  
C. A. Hackett

Camellia sinensis is a beverage tree crop native to Southeast Asia and introductions have been made into several nonindigenous countries. No systematic assessment of genetic variability in tea has been done anywhere. In this study, random amplified polymorphic DNA (RAPD) analysis was used to estimate genetic diversity and taxonomic relationships in 38 clones belonging to the three tea varieties, assamica, sinensis, and assamica ssp. lasiocalyx. Extensive genetic variability was detected between species, which was partitioned into between and within population components. Seventy percent of the variation was detected within populations. Analyses based on band sharing separated the three populations in a manner consistent with both the present taxonomy of tea and with the known pedigrees of some clones. RAPD analysis also discriminated all of the 38 commercial clones, even those which cannot be distinguished on the basis of morphological and phenotypic traits.Key words: genetic diversity, RAPDs, Camellia sinensis.


2013 ◽  
Vol 12 (44) ◽  
pp. 6253-6261
Author(s):  
R Ntuli Nontuthuko ◽  
M Zobolo Alpheus ◽  
B Tongoona Pangirayi ◽  
W Kunene Nokuthula

2018 ◽  
Vol 22 (1) ◽  
pp. 22
Author(s):  
Jayusman Jayusman ◽  
Muhammad Na’iem ◽  
Sapto Indrioko ◽  
Eko Bhakti Hardiyanto ◽  
ILG Nurcahyaningsih

Surian Toona sinensis Roem is one of the most widely planted species in Indonesia. This study aimed to estimate the genetic diversity between a number of surian populations in a progeny test using RAPD markers, with the goal of proposing management strategies for a surian breeding program. Ninety-six individual trees from 8 populations of surian were chosen as samples for analysis. Eleven polymorphic primers (OP-B3, OP-B4, OP-B10, OP-H3, OP-Y6, OP-Y7, OP-Y8, OP-Y10, OP-Y11, OP-Y14, and OP-06) producing reproducible bands were analyzed for the 96 trees, with six trees per family sampled. Data were analyzed using GenAlEx 6.3, NTSYS 2.02. The observed percentage of polymorphic loci ranged from 18.2% to 50%. The mean level of genetic diversity among the surian populations was considered to be moderate (He 0.304). Cluster analysis grouped the genotypes into two main clusters, at similarity levels of 0.68 and 0.46. The first two axes of the PCoA explained 46.16% and 25.54% of the total variation, respectively. The grouping of samples into clusters and subclusters did not correspond with family and their distances, but the grouping was in line with the genetic distances of the samples.


Sign in / Sign up

Export Citation Format

Share Document