scholarly journals In vitro and in vivo anthelmintic effects of Caesalpinia bonducella (L.) Roxb. leaf extract on Hymenolepis diminuta (Cestoda) and Syphacia obvelata (Nematoda)

2016 ◽  
Vol 5 (4) ◽  
pp. 427 ◽  
Author(s):  
Shyamalima Gogoi ◽  
Arun Yadav
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Amar Deep Soren ◽  
Arun Kumar Yadav

Abstract Background The Santhal tribe in Assam, India use the roots of Asparagus racemosus (Asparagaceae) as a deworming remedy. The study aimed to investigate the anthelmintic credentials of this plant, using two representative groups of helminth parasites. Methods The in vitro testing was conducted against Hymenolepis diminuta (cestode) and Syphacia obvelata (nematode). Parasites were exposed to 10, 20 and 30 mg/ml concentrations of plant extract, and efficacy was adjudged on the basis of parasites paralysis and mortality. In vivo efficacy was examined using H. diminuta-rat and S. obvelata-mice models where animals were administered 125, 250 and 500 mg/kg doses of extract. Results In vitro assay, against H. diminuta revealed that at 30 mg/ml concentration the extract showed almost a comparable efficacy with that of reference drug praziquantel (PZQ) (1 mg/ml). The in vitro efficacy of extract against S. obvelata was however lower than H. diminuta. In vivo studies against H. diminuta at 500 mg/kg revealed 53.88 and 24 % reduction in eggs per gram (EPG) and worm counts respectively. Against S. obvelata the extract showed 26.61 and 30.93 % reduction for the same. Conclusions The findings of this study present suggest that the roots of A. racemosus are effective against intestinal helminthic infections and justifies its use as an anthelmintic in the traditional medicine of the Santhals.


Antioxidants ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 309
Author(s):  
Olukayode O. Aremu ◽  
Adebola O. Oyedeji ◽  
Opeoluwa O. Oyedeji ◽  
Benedicta N. Nkeh-Chungag ◽  
Constance R. Sewani Rusike

Oxidative stress has gained attention as one of the fundamental mechanisms responsible for the development of hypertension. The present study investigated in vitro and in vivo antioxidant effects of 70% ethanol-water (v/v) leaf and root extracts of T. officinale (TOL and TOR, respectively). Total phenolic and flavonoid content of plant extracts were assessed using Folin Ciocalteau and aluminium chloride colorimetric methods; while, 2,2-diphenyl-1-picrlhydrazyl (DPPH), 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and ferric reducing antioxidant power (FRAP) protocols were used to determine the free radical scavenging and total antioxidant capacities (TAC), respectively. The in vivo total antioxidant capacity and malondialdehyde acid (MDA) levels for lipid peroxidation tests were performed on organ homogenate samples from Nω-nitro-L-arginine methyl ester (L-NAME)-induced hypertensive rats treated with leaf extract, TOL (500 mg/kg/day) and TOR (500 mg/kg/day) for 21 days. Results showed that compared to TOR, TOL possessed significantly higher (p < 0.01) polyphenol (4.35 ± 0.15 compared to 1.14 ± 0.01) and flavonoid (23.17 ± 0.14 compared to 3 ± 0.05) content; free radical scavenging activity (EC50 0.37 compared to 1.34 mg/mL) and total antioxidant capacities (82.56% compared to 61.54% ABTS, and 156 ± 5.28 compared to 40 ± 0.31 FRAP) and both extracts showed no toxicity (LD50 > 5000 mg/kg). TOL and TOR significantly (p < 0.01) elevated TAC and reduced MDA levels in targets organs. In conclusion, T. officinale leaf extract possesses significant anti-oxidant effects which conferred significant in vivo antioxidant protection against free radical-mediated oxidative stress in L-NAME-induced hypertensive rats.


Author(s):  
Ganiyu Oboh ◽  
Veronica O. Odubanjo ◽  
Fatai Bello ◽  
Ayokunle O. Ademosun ◽  
Sunday I. Oyeleye ◽  
...  

AbstractAvocado pear (The inhibitory effects of extracts on AChE and BChE activities and antioxidant potentials (inhibition of FeThe extracts inhibited AChE and BChE activities and prooxidant-induced TBARS production in a dose-dependent manner, with the seed extract having the highest inhibitory effect and the leaf extract exhibiting higher phenolic content and radical scavenging abilities, but lower Fe chelation ability compared with that of the seed. The phytochemical screening revealed the presence of saponins, alkaloids, and terpenoids in both extracts, whereas the total alkaloid profile was higher in the seed extract than in the leaf extract, as revealed by GC-FID.The anti-cholinesterase and antioxidant activities of avocado leaf and seed could be linked to their phytoconstituents and might be the possible mechanisms underlying their use as a cheap and natural treatment/management of AD. However, these extracts should be further investigated in vivo.


2009 ◽  
Vol 6 (2) ◽  
pp. 227-231 ◽  
Author(s):  
S. A. Adesegun ◽  
A. Fajana ◽  
C. I. Orabueze ◽  
H. A. B. Coker

The antioxidant activities of crude extract ofPhaulopsis fascisepalaleaf were evaluated and compared with α-tocopherol and BHT as synthetic antioxidants and ascorbic acid as natural-based antioxidant.In vitro, we studied its antioxidative activities, radical-scavenging effects, Fe2+-chelating ability and reducing power. The total phenolic content was determined and expressed in gallic acid equivalent. The extract showed variable activities in all of thesein vitrotests. The antioxidant effect ofP. fascisepalawas strongly dose dependent, increased with increasing leaf extract dose and then leveled off with further increase in extract dose. Compared to other antioxidants used in the study, α-Tocopherol, ascorbic acid and BHT,P. fascisepalaleaf extract showed less scavenging effect on α,α,-diphenyl-β-picrylhydrazyl (DPPH) radical and less reducing power on Fe3+/ferricyanide complex but better Fe2+-chelating ability. These results revealed thein vitroantioxidant activity ofP.fascisepala.Further investigations are necessary to verify these activitiesin vivo.


2017 ◽  
Vol 12 (2) ◽  
pp. 33-44 ◽  
Author(s):  
Shaimaa Helmy El-Sayed ◽  
Neimat Amer ◽  
Soad Ismail ◽  
Iman Ali ◽  
Enas Rizk ◽  
...  

2018 ◽  
Vol 1 (3) ◽  
pp. 106-110
Author(s):  
Novi Irwan Fauzi ◽  
Seno Aulia Ardiansyah ◽  
Saeful Hidayat

Daun malaka (Phyllanthus emblica L.) mempunyai potensi digunakan sebagai alternatif obat antidiabetes. Daun malaka menunjukkan efek hipoglikemia pada tikus yang diinduksi aloksan. Namun, mekanisme kerjanya belum diketahui pasti. Penelitian ini dilakukan dalam rangka skrining mekanisme kerja daun malaka sebagai antidiabetes. Skrining mekanisme kerja dilakukan terhadap fraksi air daun malaka melalui uji aktivitas inhibisi enzim α-glukosidase serta α-amilase secara in vitro dan pengujian aktivitas insulin-sensitizer terhadap ekstrak daun malaka dengan metode tes toleransi insulin secara in vivo. Fraksi air daun malaka menunjukkan aktivitas inhibisi terhadap enzim α-glukosidase serta α-amilase dengan nilai IC50 (Inhibitor Concentration 50) pada kedua enzim tersebut berturut-turut adalah 0,87% dan 8,64% b/v. Pada uji aktivitas insulin sensitizer, pemberian ekstrak daun malaka dapat meningkatkan sensitivitas insulin pada tikus diabet dengan kondisi resistensi insulin. Nilai KTTI pada kelompok tikus diabet yang diberi ekstrak daun malaka dosis 100 dan 500 mg/kgbb tikus (74,89 dan 75,57) lebih tinggi dibandingkan kelompok tikus diabet (38,41) dan kadar glukosa darah yang lebih rendah selama interval waktu pengukuran. Daun malaka telah diketahui mampu meningkatkan sekresi insulin dan pada penelitian ini menunjukkan aktivitas inhibisi enzim α-glukosidase serta α-amilase secara in vitro dan menunjukkan aktivitas insulinsensitizer pada tikus diabet dengan kondisi resistensi insulin.   Malaka leaf (Phyllanthus emblica L.) has the potential to be used as an alternative antidiabetic drug. Malacca leaves showed hypoglycemia effect in rat induced by alloxan. However, the mechanism of action is not yet known. This study was conducted to evaluate the mechanism of action of Malaka leaves as antidiabetic. Screening of the mechanism of action was carried out on the water fraction of Malaka leaf  byinhibitory activity examination  on α-glucosidase and α-amylase by in vitro studyand Evaluation of insulin-sensitizer activity of Maaka leaf leaf extract was conducted by invivo  insulin tolerance test method. Malaka leaf water fraction showed inhibitory activity against the α-glucosidase and α-amylase with IC50 values ​​(Inhibitory Concentration 50)  of0.87% and 8.64% b / v on both enzyme, respectively. The evaluation of insulin sensitizer revelead that administration ofMalaka  leaf extract can increase insulin sensitivity in diabetic rat with insulin resistance.KTTI values ​​in diabetic rats given malaka extract  at the dose of 100 and 500 mg / kg BW (74.89 and 75.57) were higher than diabetics rat (38.41) and the extract also decrease blood glucose levels during measurement time intervals . Malaka leafhas been known to increase insulin secretion and the study showedthe  inhibitory activity on α-glucosidase and α-amylase by in vitro study and showed insulinsensitizer activity in diabetic rat with insulin resistance.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Hao Chen ◽  
Min Jin ◽  
Yi-Fen Wang ◽  
Yong-Qing Wang ◽  
Ling Meng ◽  
...  

Toona microcarpaHarms is a tonic, antiperiodic, antirheumatic, and antithrombotic agent in China and India and an astringent and tonic for treating diarrhea, dysentery, and other intestinal infections in Indonesia. In this study, we prepared ethyl-acetate extract from the air-dried leaves ofToona microcarpaHarms and investigated the anticoagulant activitiesin vitroby performing activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT) assays. Antiplatelet aggregation activity of the extract was examined using adenosine diphosphate (ADP), collagen, and thrombin as agonists, and the inhibitions of factor Xa and thrombin were also investigated. Bleeding and clotting times in mice were used to determine its anticoagulant activitiesin vivo. It is found thatToona microcarpaHarms leaf extract (TMHE) prolonged APTT, PT, and TT clotting times in a dose-dependent manner and significantly inhibited platelet aggregation induced by thrombin, but not ADP or collagen. Clotting time and bleeding time assays showed that TMHE significantly prolonged clotting and bleeding timesin vivo. In addition, at the concentration of 1 mg/mL, TMHE inhibited human thrombin activity by 73.98 ± 2.78%. This is the first report to demonstrate that THME exhibits potent anticoagulant effects, possibly via inhibition of thrombin activity.


2020 ◽  
Vol 7 (2) ◽  
pp. 50-55
Author(s):  
Anitha T A ◽  
Pakutharivu T ◽  
Nirubama K ◽  
Akshaya V

The traditional herbal medicines are mainly obtained from plants are used in the management of Diabetes mellitus. The main objective of this work was to assess the presence of phytochemical compounds and to evaluate the in vitro antidiabetic activity of isopropanolic extracts of Pimenta racemosa leaves by studying their α-amylase inhibitory activity and glucose transport across yeast cells. Screening of phytochemicals showed positive results for alkaloids, steroids, cardiac glycosides, terpenoids, reducing sugars, anthraquinones, and results of in vitro α-amylase inhibitory studies demonstrated there was a dose-dependent increase in percentage inhibitory activity by the isopropanolic leaf extracts of Pimenta racemosa. At a concentration of 1 mg/ml, the extract showed a percentage inhibition 33.6 and for 5 mg/ml it was 91.2. The glucose uptake study was also studied through yeast cells by analyzing theamount of glucose remaining in the medium after a specific time intervals. It serves as an indicator for the capability of isopropanolic leaf extracts of Pimenta racemosa to transport the glucose into yeast cells. As a result, we found that the isopropanolic leaf extract of Pimenta racemosa have inhibitory activity against αamylase and also, which is efficient in glucose uptake. This therapeutic potentiality of Pimenta racemosa could be exploited in the treatment of Type 2 Diabetes mellitus. Further studies are also required to elucidate whether the plant have antidiabetic potential by in vivo for corroborating the traditional claim of the plant.


Sign in / Sign up

Export Citation Format

Share Document