scholarly journals Damage in the Westport area

Author(s):  
T. M. Chandler

(a) The area concerned in this report is the coastal strip from the Buller River northwards to Maramea. The main town in the area is Westport which is a Borough with 1300 dwelling houses. Many of the buildings go back to the early 1900’s and fewer new houses and commercial buildings have been built in latter years than in most New Zealand towns of a similar age. (b) Within the last 40 years Westport has suffered three earthquakes which have caused considerable damage to buildings - Buller 1929 - Westport 1962 - Inangahua 1968. The latter two earthquakes occurred after the introduction of the Earthquake & War Damage Act. From the 1962 earthquake more than 1500 claims were received from the district while in 1968 more than 2200 claims were registered. Probably within the Borough of Westport the number of claims from both the shocks was about the same. However in the 1968 shock there were many more claims from the townships further north of Westport - Waimangaroa, Granity, Hector, Nikau, Denniston, Seddonville and Karamea.

Author(s):  
P. D. Anderson ◽  
T. W. J. Osborne

Greymouth is approximately 100 km from the epicentre and Hokitika approximately 130 km. The intensity of damage changed significantly over this distance, there being considerable damage at Greymouth but only slight damage at Hokitika. Some Hokitika commercial buildings
of construction similar to buildings which suffered moderate damage in Greymouth had virtually no damage at all.


Author(s):  
Yi Wu ◽  
Claire Flemmer

Glass curtain wall provides an attractive building envelope, but it is generally regarded as unsustainable because of the high energy needed to maintain thermal comfort. This research explores the advances in the technology of glass cladding and the complex issues associated with judging its sustainability. It assesses the technology and sustainability of glass curtain wall on a sample of thirty commercial buildings in Auckland, New Zealand. Field observations of the glass-clad buildings, coupled with surveys of the building occupants and of glass cladding professionals are used to investigate the cladding characteristics, operational performance, sustainability aspects and future trends. The majority of the sample buildings are low-rise office buildings. The occupants like the aesthetics and indoor environment quality of their glass-clad buildings. However, continuous heating, ventilation and air conditioning are needed in order to maintain thermal comfort within the buildings and this has high energy consumption. The increasing use of unitized systems with double glazing instead of stick-built systems with single glazing improves the sustainability of the cladding through less material wastage and better energy efficiency. Inclusion of photovoltaic modules in the curtain wall also improves energy efficiency but it is currently too expensive for use in New Zealand. Environmental sustainability is also improved when factors such as climate, the orientation of glazed façades, solar control, ventilation and the interior building layout are considered. Any assessment of glass curtain wall sustainability needs to consider the economic and social aspects as well as the environmental aspects such as energy use


2021 ◽  
Author(s):  
◽  
Sandi Sirikhanchai

<p>New Zealand’s energy and electricity system is likely to undergo serious changes with climate change and the decarbonisation of the grid playing a significant role. Research in New Zealand around flexibly managing the electricity grid using buildings has focused on thermoelectric appliances in the residential sector while there has been limited research and quantification of the energy flexibility offered by commercial buildings. Despite this, managing the grid using energy flexible commercial buildings represents an opportunity to achieve meaningful reductions in electricity demand from buildings that are far less numerous than residential buildings.  The aim of this thesis was to establish whether energy flexible commercial buildings in New Zealand can maintain the current quality of indoor thermal comfort and achieve reductions in demand that are sufficiently large that grid operators consider them significant contributors to grid management. By understanding the contribution, we can understand whether energy flexible commercial buildings are worth further investigation. In this thesis, energy flexibility means the ability for a building to manage its demand and generation according to user needs, grid needs, and local climate conditions. Energy flexibility in commercial buildings could then support the integration of more variable renewable energy sources and increase demand response capability which is a cost-effective way to manage network constraints and reduce non-renewable  electricity generation.   Case studies of New Zealand commercial buildings represented as Building Energy Models (BEMs) were simulated under energy flexible operation in a building performance simulation software (EnergyPlus). The selected case studies were small commercial buildings less than 1,499m² in size and which all contained heat pumps. The buildings were of office, retail, and mixed-use types. Two simple energy flexibility strategies were simulated in the buildings and the results from each building were then aggregated and extrapolated across the New Zealand commercial building stock. The strategies simply shifted and shed heating electricity demand. This was done to test whether implementing basic energy flexibility strategies have the potential to reduce electricity demand by a meaningful magnitude.   At best the commercial building stock’s peak demand could reduce by 177MW by energy flexibly operating 45% of the commercial building stock, this was equivalent to around 11,700 buildings. In this scenario heating was shifted to start 150 minutes earlier in the morning. The study concluded that there is energy flexibility potential in New Zealand commercial buildings that results in demand reductions sufficiently large enough for grid operators to consider significant for grid management. This could be achieved without seriously jeopardising the current quality of indoor thermal comfort and warrants further investigation into energy flexible commercial buildings. This thesis also presented a refined methodology and energy modelling practice that could be used by other researchers to model and evaluate energy flexible buildings without the need to recreate the same methodology.</p>


2021 ◽  
Author(s):  
◽  
Sandi Sirikhanchai

<p>New Zealand’s energy and electricity system is likely to undergo serious changes with climate change and the decarbonisation of the grid playing a significant role. Research in New Zealand around flexibly managing the electricity grid using buildings has focused on thermoelectric appliances in the residential sector while there has been limited research and quantification of the energy flexibility offered by commercial buildings. Despite this, managing the grid using energy flexible commercial buildings represents an opportunity to achieve meaningful reductions in electricity demand from buildings that are far less numerous than residential buildings.  The aim of this thesis was to establish whether energy flexible commercial buildings in New Zealand can maintain the current quality of indoor thermal comfort and achieve reductions in demand that are sufficiently large that grid operators consider them significant contributors to grid management. By understanding the contribution, we can understand whether energy flexible commercial buildings are worth further investigation. In this thesis, energy flexibility means the ability for a building to manage its demand and generation according to user needs, grid needs, and local climate conditions. Energy flexibility in commercial buildings could then support the integration of more variable renewable energy sources and increase demand response capability which is a cost-effective way to manage network constraints and reduce non-renewable  electricity generation.   Case studies of New Zealand commercial buildings represented as Building Energy Models (BEMs) were simulated under energy flexible operation in a building performance simulation software (EnergyPlus). The selected case studies were small commercial buildings less than 1,499m² in size and which all contained heat pumps. The buildings were of office, retail, and mixed-use types. Two simple energy flexibility strategies were simulated in the buildings and the results from each building were then aggregated and extrapolated across the New Zealand commercial building stock. The strategies simply shifted and shed heating electricity demand. This was done to test whether implementing basic energy flexibility strategies have the potential to reduce electricity demand by a meaningful magnitude.   At best the commercial building stock’s peak demand could reduce by 177MW by energy flexibly operating 45% of the commercial building stock, this was equivalent to around 11,700 buildings. In this scenario heating was shifted to start 150 minutes earlier in the morning. The study concluded that there is energy flexibility potential in New Zealand commercial buildings that results in demand reductions sufficiently large enough for grid operators to consider significant for grid management. This could be achieved without seriously jeopardising the current quality of indoor thermal comfort and warrants further investigation into energy flexible commercial buildings. This thesis also presented a refined methodology and energy modelling practice that could be used by other researchers to model and evaluate energy flexible buildings without the need to recreate the same methodology.</p>


2021 ◽  
Author(s):  
◽  
Shaan Cory

This thesis explores the feasibility of converting the current New Zealand commercial building stock to Net Zero Energy (NZE). The analysis presented is grounded in real building performance and construction information. The goal was to establish results that are as realistic as possible to actual building performance. The Net Zero Energy Building (Net ZEB) concept is one of many low energy building movements that respond to the issues of climate change and energy security. The Net ZEB concept strives to reduce demand for energy and then to offset any residual energy consumption with non-CO2 emitting renewable energy technologies. The (re-)design focus for Net ZEBs is to reduce annual energy consumption to be equal to or less than any generated renewable energy. This is an important concept since approximately 40 percent of all energy and emissions worldwide are building related. If all buildings were designed and operated to be NZE, the existing energy can be used by other sectors which will increase energy security. Conversely, reducing the fossil fuel CO2 producing component of the energy consumed by buildings has the benefit of negating building’s contribution to climate change. The Net ZEB concept assumes each building is grid-connected, and balances the energy taken from the grid against the energy put back into the grid over a year. This study exploits the available synergies of the grid connection to achieve NZE for the whole building stock. Thus each individual building does not need to be NZE at the site, but they act as a community to reach NZE collectively. Furthermore, any grid-tied renewable energy does not need to be offset, only the non-renewable portion. A NZE target was calculated to determine the percentage reduction in current energy consumption needed before the current commercial building stock could be considered NZE. It was found that a 45 percent reduction in primary energy would offset all non-renewable CO2 emitting energy supply currently consumed by the New Zealand commercial building stock. Previous studies assessing whether converting an entire stock of commercial buildings to NZE is possible used prototypical building energy models. Prototypical models represent a hypothetical average building and have many assumptions about the way a building is operated. This thesis develops a method that takes a representative sample of real commercial buildings and makes calibrated energy models that can be aggregated to represent energy consumption for all commercial buildings in New Zealand. The developed calibration method makes use of as-built building information and a standardised procedure for identifying the inaccurate model inputs which need to be corrected for a building energy model to be calibrated. To further base the process in reality, a set of Energy Conservation Measures (ECM) that had been implemented in real Net ZEBs worldwide was adopted for the proposed retrofits. These ECMs were combined into Net ZEB solution sets for retrofitting the aggregated commercial building models. Optimisation of the Net ZEB solution sets was performed on hundreds of models to maximise energy savings. It took over six months for all of the optimisations to be completed. This thesis demonstrates the estimated New Zealand commercial building stock’s energy consumption based upon the calibrated energy models was robust by comparing it to an external estimate. It shows that NZE can be achieved by applying well understood Net ZEB solution sets to the New Zealand commercial building stock. 96 percent of the NZE goal is attainable just through demand reduction without the use of onsite renewable energy generation. The additional four percent of reduction required to meet NZE is easily attainable with onsite renewable generation. Another benefit is that the retrofitted commercial buildings will provide improved thermal comfort for the occupants. Having established NZE was possible, this thesis concludes with an analysis of the broader implications of achieving the NZE goal. It identifies the next step would be to design a NZE commercial building stock that reduces the stresses on the existing energy infrastructure. The Solution Set adopted was not developed with the interaction of the building and electrical grid in mind. To have a practical implementation of NZE will require costing and community prioritisation. This would be the next phase of work assessing nationwide NZE retrofit.


2012 ◽  
Vol 65 ◽  
pp. 218-227 ◽  
Author(s):  
D.C. Mundy ◽  
R.H. Agnew ◽  
P.N. Wood

Botrytis cinerea is a fungus responsible for considerable damage to a wide range of crops worldwide including grapes Botrytis bunch rot caused by B cinerea is the major disease problem that must be managed by the New Zealand wine industry each season However the fungus is not easily managed as it can be both necrotrophic and saprophytic with a range of overwintering inoculum sources New Zealand grape growers have asked whether it is necessary to remove tendrils at the time of pruning in order to minimise botrytis bunch rot infection at harvest This review provides a summary of the information currently available on the importance of tendrils in the epidemiology of botrytis bunch rot under New Zealand conditions Gaps in knowledge and areas for further investigation are also identified


Author(s):  
Andrew Baird ◽  
Helen Ferner

This paper describes the damage to non-structural elements in buildings following the 14th November 2016 Kaikōura earthquake. As has been observed in recent earthquakes in New Zealand and around the world, damage to non-structural elements is a major contributor to overall building damage. This paper focusses on damage to non-structural elements in multi-storey commercial buildings, in particular damage to the following: suspended ceilings, suspended services, glazing, precast panels, internal linings, seismic gaps and contents. The nature and extent of damage to each of these components is discussed in this paper with the help of typical damage photos taken after the earthquake. The paper also presents observations on the seismic performance of non-structural elements where seismic bracing was present. These observations suggest that seismic bracing is an effective means to improve seismic performance of non-structural elements.


2021 ◽  
Author(s):  
◽  
Anthony Gates

<p>Template energy calculation models that have been produced by the Building Energy End-use Study (BEES) team are used to quickly and reliably model commercial buildings and calculate their energy performance. The template models contain standardised equipment, lighting, and occupancy loads; cooling and heating requirements are calculated using an ideal loads air system. Using seven buildings, Cory et al. 2011a have demonstrated that the template models have the potential to closely match the monthly energy performance of detailed (individually purpose built) models and the real buildings. Three of these models were within the ±5% acceptable tolerance to be considered calibrated. The four template models that were not within the acceptable tolerance have been identified to have complex Heating, Ventilation, and Air Conditioning (HVAC) systems that the ideal loads air systems could not replicate. Because HVAC systems consume one of the largest proportions of energy in commercial buildings, this has a significant impact on the reliability of the template models. To address this issue, a set of detailed HVAC systems were needed to replace the ideal loads air systems. Due to HVAC system parameters not being collected by the BEES team and the lack of published modelling input parameters available, it is unknown what values are reasonable to use in the models. This study used a Delphi survey to collect real building information of the commonly installed HVAC systems in New Zealand commercial buildings. The survey formed a consensus between HVAC engineers that determined what the most commonly installed systems are and their associated performance values. The outcome of the survey was a documented set of system types and modelling input parameters that are representative of New Zealand HVAC systems. The responses of the survey were used to produce a set of HVAC system templates that replace the ideal loads air systems. The HVAC template models updated the software default parameter values with values that are representative of commonly installed systems in New Zealand. The importance of the updated input values was illustrated through a comparison of the calculated monthly energy consumption. The resulting difference in energy consumption using the updated parameter values is typically <5% monthly; at worst it is 75% for Variable Air Volume (VAV) system in the Wellington climate during June.</p>


2021 ◽  
Author(s):  
◽  
Alex Josephine Hills

<p>This thesis proposes a reinvention of the means of presenting statistical data about 3D urban environments. Conventional GIS use of 3D ’enhances’ hard to understand 2D maps with even harder-to-understand histograms of data. The goal is to demonstrate the means by which data on energy and water-use in buildings can be used to enhance familiar 3D interactive city environments and be made accessible to the widest possible audience. Ultimately, resource benchmarks and other related publicly available information about the built environment could be presented in this highly accessible form. All information would be database driven, so automatically updateable. From this basic platform, applications that allow people to compare their own private records with public norms are easily constructed: a world where a building owner can compare their energy records with benchmarks for similar buildings and take action to improve if necessary, or to advertise accomplishments.  This study draws on data from the ‘BEES’ Building Energy End-use Study - a BRANZ research project documenting energy and water use in New Zealand commercial buildings. During the study a ‘Websearch’ survey was conducted, building a detailed picture of non-residential building stock in New Zealand with data collected on building typologies, characteristics and surroundings. A thorough research methodology was developed to ensure that high level data could be collected from 3,000 randomly selected buildings within the budget allocated for the project. The data was examined for quality, building characteristics and typology mix and a valuable layer of detail was added by inferring additional information from the basic Websearch dataset. Where sub-samples used in the BEES study were subject to refusal / survey participation rates, the level of potential bias in the mix of building typologies could be tested and allowances made. Energy and water use data collected for a random subset of the sample, could then be applied as benchmarks to the census of New Zealand commercial buildings.  In order to trial the communication of the benchmark results to the widest possible audience, an automated 3D city visualisation ‘pilot’ was generated of the Wellington Central Business District and a number of graphic tools were brought together to make the information publicly accessible and as useful as possible. The overall aim was to test the feasibility of applying this technique at a national level.  The research revealed three major recommendations: firstly, a national unique building identifier is required to ensure the accuracy of national building data and enable statistical results about the built environment to be accurately and reliably applied to real buildings; secondly, resource use data in 3D format is urgently required to improve the value of sustainable properties; lastly, creating a significant impact on building stock efficiency will depend upon the engagement of a wider audience. Developed further, this visualisation will enable construction professionals, building owners, developers and tenants to understand the built environment and implications of building design and typology on energy and water use.</p>


Sign in / Sign up

Export Citation Format

Share Document