scholarly journals Enhancing phenol removal from waste water by adding powder activated carbon to the lab-scale activated sludge system

Author(s):  
Nguyen My Linh ◽  
Nguyen Duy Dat

In this study, the commercial powder activated carbon (PAC) was added to a bench scale conventional activated sludge (CAS) system to enhance phenol removal. The mixed liquor suspended solid (MLSS) concentration of CAS with adding PAC was stable in all stages of operation, while MLSS concentrations in CAS without PAC addition sharply decreased as the Phenol loading reached 1.8 g phenol/L.day. Higher removal of chemical oxygen demand (COD) and Phenol achieved with the CAS by PAC addition compared with those achieved with CAS without PAC addition. The difference in COD removal efficiency was 7 - 9% in stages 3 and 4 (0.8 and 1.2 g phenol/L.day, respectively), and about 33% in stage 5 (1.8 g phenol/L.day). The advantage of CAS with PAC addition was clearly observed in the highest phenol loading (1.8 g phenol/L.day) because the MLVSS/MLSS ratio of CAS with PAC addition increased and the COD and phenol removal efficiencies kept stable in this stage, while reverse trends were found for CAS without PAC addition. The results indicated that the adaptive ability of the CAS by adding PAC was significantly higher than the CAS without AC addition. This study offers useful preliminary results for applying a hybrid system between CAS and adsorption with PAC for further research and application in future.

REAKTOR ◽  
2015 ◽  
Vol 15 (3) ◽  
pp. 182
Author(s):  
Dian Fatikha Aristiami ◽  
I Nyoman Widiasa

The increase of population leads to an increase of the quantity of domestic wastewater. Activated sludge system is the most cost-efective to treat the domestic wastewater treatment. This study is aimed to evaluate the co-precipitation coagulant effect of FeCl3 on the growth of activated sludge, settling characteristics of the activated sludge, and effluent quality. sludge sedimentation characteristics (settling) as well as on the effluent quality. The activated sludge systems were operated in batch mode and synthetic domestic wastewaters with C:N:P ratio of 100:5:1 were used as feed wastewater. The growth of activated sludge was based on concentration of Mixed Liquor Suspended Solid (MLSS), settling characteristics of activated sludge was based on value of Sludge Volume Index (SVI), and effluent quality was based on turbidity, colour, N-ammonia concentration, and Chemical Oxygen Demand content. Results indicate that inhibition effect of FeCl3 to activated sludge activity was not significant at dosage ≤ 30 mg/L. Good settling characterisic (SVI 70-150 mg/L) was achieved at dosage of 20-30 mg/L. Finally, the best effluent quality, i.e. turbidity (9.4), colour (96), amonia removal (83.6%), and COD removal (72.97%), at dosage of 30 mg/L. Keywords: activated sludge; co-precipitation; domestic wastewater; wastewater treatment Abstrak Peningkatan jumlah penduduk mengakibatkan kenaikan jumlah air limbah domestik. Sistem lumpur aktif merupakan proses yang paling efektif untuk mengolah air limbah domestik. Penelitian ini bertujuan untuk mengevaluasi pengaruh co-precipitation koagulan FeCl3 terhadap pertumbuhan lumpur aktif, karakteristik pengendapan lumpur aktif, dan kualitas efluen. Sistem lumpur aktif dioperasikan secara curah dan umpan air limbah yang digunakan adalah air limbah domestik sintesis dengan rasio C:N:P = 100:5:1. Pertumbuhan lumpur aktif  berdasarkan konsentrasi Mixed Liquor Suspended Solid (MLSS), karakteristik pengendapan lumpur berdasarkan  nilai Sludge Volume Index (SVI), dan kualitas efluen berdasarkan tingkat kekeruhan, warna, kadar N-amonia dan kadar Chemical Oxygen Demand (COD). Hasil penelitian menunjukkan bahwa inhibisi FeCl3 terhadap aktivitas lumpur aktif tidak signifikan pada dosis ≤ 30 mg/L. Karakteristik pengendapan yang baik (SVI 70-150 mg/L) tercapai pada dosis 20-30 mg/L. Kualitas efluen terbaik, yaitu  kekeruhan (9,4),  warna (96), penyisihan amonia (83,6%) dan penyisihan COD (72,97%), pada dosis 30 mg/L. Kata kunci: lumpur aktif; co-precipitation; air limbah domestik; pengolahan air limbah  


2018 ◽  
Vol 23 ◽  
pp. 00026
Author(s):  
Sylwia Myszograj

It was described the test of sewage sludge and organic fraction of municipal mixed solid waste thermal disintegration process. The waste activated sludge used during the tests was collected from the secondary settlement tank in a mechanical-biological wastewater treatment plant. The biowaste used in the studies was collected from an area of new buildings. It was noticed from means values of Soluble Chemical Oxygen Demand (SCOD) plot that both heating temperature and time, influence the amount of dissolved COD. The observations indicate that changes of SCOD can be described by an increasing, differentiable function of time and the rate of change of the soluble COD in the hydrolysates, in time is proportional to the difference of the maximum values of SCOD and its value in time, which leads to the relationship of the first-order ordinary differential equation. The process effectiveness depending on the temperature was described with the mathematical model including Van't Hoff-Arrhenius equation. Inspection of the data and some preliminary fits indicates, that for the description of changes in SCOD terms of time and temperature were adopted the form of nonlinear mixed model. Values of k20 indicator and Θ parameter depend on the substrate type. For waste activated sludge thermal disintegration, value of reaction speed indicator k20 was 0.028 h-1 (0,67 d-1), and value of temperature indicator equalled Θ = 1.024. For thermal disintegration of biological waste, value of reaction speed indicator k20 was 0.016 h-1 (0,38 d-1), and value of temperature indicator equalled Θ = 1.016.


2018 ◽  
Vol 7 (4.35) ◽  
pp. 22
Author(s):  
Gasim Hayder ◽  
Puniyarasen Perumulselum ◽  
Hitham Alhussian

Fixed bed biofilm reactors were evaluated with three different arrangements of bio-balls. The performance of different arrangements was evaluated based on chemical oxygen demand (COD), total suspended solid (TSS) and mixed liquor suspended solid (MLSS). The three rectors were fabricated and operated in lab scale model with real domestic wastewater. Considering the TSS removal efficiency, arrangement one was the best followed by arrangement two and arrangement three. While for COD, arrangement one recorded the highest removal efficiency followed by arrangement two and column. The average COD concentration for arrangement one was 23 while for arrangement two and arrangement three was 25 and 36 mg/l respectively. The overall average effluent TSS concentrations for the arrangement one, two and three were 25, 32 and 45 mg/l respectively. TSS and COD removal was almost the same for arrangement one and arrangement two but arrangement one has the highest among them, and all removal is acceptable under Malaysian standards. Besides that, all the three arrangements have the differences in terms of maintenance and installation. There was no clogging occurred in all the three arrangements.


1997 ◽  
Vol 35 (2-3) ◽  
pp. 283-290 ◽  
Author(s):  
R. M. Narbaitz ◽  
R. L. Droste ◽  
L. Fernandes ◽  
K. J. Kennedy ◽  
D. Ball

The PACTTM process (powdered activated carbon addition to the activated sludge process) was evaluated for the treatment of Kraft pulp mill wastewater in a series of bench scale experiments. Possibly due to the relatively low strength wastewater, the PACTTM process with carbon doses between 0.5 and 1.0 g/L of influent only performed marginally better than the conventional activated sludge process. Chemical oxygen demand and toxicity, evaluated with the Microtox® assay, were among the parameters monitored. For the operating conditions tested the solids retention time had no impact on performance. The main improvement was increased in adsorbable organic halides (AOX) removal, the magnitude of the improvement was dependent on the wastewater batch and the carbon dose. However conventional activated sludge treatment will meet Ontario's year 2000 AOX regulations. An empirical model from the literature described the data fairly well.


2020 ◽  
Vol 17 (2) ◽  
pp. 700-703
Author(s):  
J. Nur Dhamirah Sakinah ◽  
M. I. Aida Isma

Beverages industry producing large amount of wastewater during production and the cleaning process. The effluent discharge needs to be treated as it is harmful to the environment due to its high concentration of organic substances. In this study, the aim is to investigate the moving bed biofilm reactor’s performance in treating beverages wastewater with (CMBAC) and without activated carbon (CMB). The surface of cosmo ball was coated with granular activated carbon used as the attached growth media in the reactor. 18 L of MBBR using cosmo ball as media was setup at flowrate and hydraulic retention time of 1.5 L/hr and 8 hours, respectively. The reactor was maintained at pH 7 with minimum dissolved oxygen concentration of 2 mg/L. Experiment was repeated by using CMBAC as media. The best percentage removal achieved for chemical oxygen demand and total suspended solid was by MBBR using CMBAC with 92.7% and 83.4%, respectively. It should be noted that absorption of contaminant by activated carbon absorption enhanced the organic removal in the reactor.


2018 ◽  
Vol 78 (5) ◽  
pp. 1129-1136 ◽  
Author(s):  
S. Kitanou ◽  
M. Tahri ◽  
B. Bachiri ◽  
M. Mahi ◽  
M. Hafsi ◽  
...  

Abstract The study was based on an external pilot-scale membrane bioreactor (MBR) with a ceramic membrane compared to a conventional activated sludge process (ASP) plant. Both systems received their influent from domestic wastewater. The MBR produced an effluent of much better quality than the ASP in terms of total suspended solids (TSS), 5-day biological oxygen demand (BOD5) and chemical oxygen demand (COD), total phosphorus (TP) and total nitrogen (TN). Other effluent quality parameters also indicated substantial differences between the ASP and the MBR. This study leads to the conclusion that in the case of domestic wastewater, MBR treatment leads to excellent effluent quality. Hence, the replacement of ASP by MBR may be justified on the basis of the improved removal of solids, nutrients, and micropollutants. Furthermore, in terms of reuse the high quality of the treated water allows it to be reused for irrigation.


2020 ◽  
Vol 273 ◽  
pp. 122482 ◽  
Author(s):  
Viktória Pitás ◽  
Viola Somogyi ◽  
Árpád Kárpáti ◽  
Péter Thury ◽  
Tamás Fráter

2020 ◽  
Vol 81 (2) ◽  
pp. 217-227
Author(s):  
Khalid Hassan ◽  
Olfat Hamdy ◽  
Mohamed Helmy ◽  
Hossam Mostafa

Abstract This paper documents the results of 12 months of monitoring of an upgraded hybrid moving bed biofilm reactor-conventional activated sludge wastewater treatment plant (MBBR-CAS WWTP). It also targets the assessment of the increment of the hydraulic load on existing treatment units with a zero construction and land cost. The influent flow to the plant was increased from 21,000 m3 d−1 to 30,000 m3 d−1, 40% of the existing CAS reactor volume was used for the MBBR zone with a carrier fill fraction of 47.62% and with Headworks Bio ActiveCell™ 515 used as media; no modifications were made for the primary and secondary tanks. The hybrid reactor showed high removal efficiencies for biochemical oxygen demand (BOD5), chemical oxygen demand (COD) and total suspended solids (TSS), with average effluent values recording 33.00 ± 8.87 mg L−1, 52.90 ± 9.65 mg L−1 and 29.50 ± 6.64 mg L−1 respectively. Nutrient removals in the hybrid modified biological reactor were moderate compared with carbon removal despite the high C/N ratio of 12.33. Findings in this study favor the application of MBBR in the upgrading of existing CAS plants with the plant BOD5 removal efficiency recording an increase of about 5% compared with the plant before upgrade and effluent values well within the legal requirements.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1249
Author(s):  
Michael Cramer ◽  
Jens Tränckner

The study investigates the decay of heterotrophic biomass in biofilms under starvation conditions based on measurements of the oxygen uptake rate (OUR). Original incentive was to understand the preservation of active biomass in SBR-trickling filter systems (SBR-TFS), treating event-based occurring, organically polluted stormwater. In comparison with activated sludge systems, the analyzed biofilm carrier of SBR trickling filters showed an astonishing low decay rate of 0.025 d−1, that allows the biocenosis to withstand long periods of starvation. In activated sludge modeling, biomass decay is regarded as first order kinetics with a 10 times higher constant decay rate (0.17–0.24 d−1, depending on the model used). In lab-scale OUR measurements, the degradation of biofilm layers led to wavy sequence of biomass activity. After long starvation, the initial decay rate (comparable to activated sludge model (ASM) approaches) dropped by a factor of 10. This much lower decay rate is supported by experiments comparing the maximum OUR in pilot-scale biofilm systems before and after longer starvation periods. These findings require rethinking of the approach of single-stage decay rate approach usually used in conventional activated sludge modelling, at least for the investigated conditions: the actual decay rate is apparently much lower than assumed, but is overshadowed by degradation of either cell-internal substrate and/or the ability to tap “ultra-slow” degradable chemical oxygen demand (COD) fractions. For the intended stormwater treatment, this allows the application of technical biofilm systems, even for long term dynamics of wastewater generation.


Sign in / Sign up

Export Citation Format

Share Document