scholarly journals Core Flooding Experiment to Increase Recovery Factor Using “U-Champ” Biosurfactant

Author(s):  
Joko Pamungkas ◽  
Harry Budiharjo Sulistyarso ◽  
Indah Widiyaningsih ◽  
Hanqenina Damayanti
Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xiaoyan Wang ◽  
Jie Zhang ◽  
Guangyu Yuan ◽  
Wei Wang ◽  
Yanbin Liang ◽  
...  

Surfactant polymer (SP) flooding has become an important enhanced oil recovery (EOR) technique for the high-water cut mature oilfield. Emulsification in the SP flooding process is regarded as a powerful mark for the successful application of SP flooding in the filed scale. People believe emulsification plays a positive role in EOR. This paper uses one-dimensional homogenous core flooding experiments and parallel core flooding experiments to examine the effect of emulsification on the oil recoveries in the SP flooding process. 0.3 pore volume (PV) of emulsions which are prepared using ultralow interface intension (IFT) SP solution and crude oil with stirring method was injected into core models to mimic the emulsification process in SP flooding, followed by 0.35 PV of SP flooding to flood emulsions and remaining oil. The other experiment was preformed 0.65 PV of SP flooding as a contrast. We found SP flooding can obviously enhance oil recovery factor by 25% after water flooding in both homogeneous and heterogeneous cores. Compared to SP flooding, emulsification can contribute an additional recovery factor of 3.8% in parallel core flooding experiments. But there is no difference on recoveries in homogenous core flooding experiments. It indicates that the role of emulsification during SP flooding will be more significant for oil recoveries in a heterogeneous reservoir rather than a homogeneous reservoir.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 1) ◽  
Author(s):  
Zilin Zhang ◽  
Bo Huang ◽  
Liang Zhang ◽  
Guangqing Zhou ◽  
Yanhui Liu ◽  
...  

Abstract Injection of imbibition fluids or CO2 during hydraulic fracturing is an effective stimulation method for tight oil reservoirs. Selecting appropriate agents is significant to optimize the integrated scheme of fracturing and production in tight oil reservoirs. In this study, a series of lab experiments, including spontaneous imbibition, dynamic imbibition, and huff and puff, were carried out using real tight cores, water absorption apparatus, and core flooding equipment. The EOR performances of imbibition fluids and CO2 in fractured tight cores were compared. The mass transfer of imbibition fluids and CO2 in tight oil reservoirs and its influence on the sweeping volume and EOR mechanisms were discussed. The results show that (1) the spontaneous imbibition rate of imbibition fluids in tight cores is slow, and the oil recovery factor by spontaneous imbibition in cracked cores is relatively high, up to 13.42%. (2) In the dynamic imbibition experiments, the final oil recovery by CO2 injection was significantly higher than that by injecting imbibition liquids. Because of the excellent miscibility effect of CO2, oil production by CO2 injection mainly occurred in the primary displacement stage. Comparatively, the EOR effect of imbibition fluids mainly played its role during production after well shut-in, which can increase the oil recovery factor by 7.35%-11.64%. (3) The influence of the huff and puff mode of CO2 on EOR performance is greater than that of imbibition fluids due to its more sensitive compressibility and mass transfer rate. Generally, a high oil recovery factor can be obtained if the depletion production is conducted first, and a huff and puff operation is followed. (4) Comprehensively understanding the mass transfer characteristics of CO2 and imbibition fluids in tight oil reservoirs can guide the fracturing parameter design, such as the order of fracturing fluid slugs, the optimal soak time, and fracture spacing.


Author(s):  
Aditya Rachman ◽  
Rini Setiati ◽  
Kartika Fajarwati Hartono

<em>The majority of petroleum production comes from the brown field where production has decreased from year to year in Indonesia. To increase the recovery factor of petroleum from the reservoir, an advanced step of production is required, Enhanced Oil Recovery (EOR), which can optimize the depletion of old oil fields. EOR is the application of technology that requires cost, technology and high risk. Therefore, before implementing EOR, in a field, we must carefully evaluate both technically and economically to obtain an optimal additional recovery. This research was conducted to increase oil production by injection of Methyl Ester Sulfonate (MES). This study begins with a screening parameter crude oil, formation water, Berea’s core, and determination of phase behavior, interfacial tension (IFT), thermal stability, imbibition, and core flooding tests. The result for concentratin optimum in 0.3% MES and had IFT 0.3267 dyne/cm. The results of core flooding tests are: Recovery factor of waterflooding is 33.95 % and recovery factor of MES injection is 4.19 %.</em>


2017 ◽  
Vol 1 (1) ◽  
pp. 8
Author(s):  
Indah Widiyaningsih

Injeksi surfaktan merupakan salah satu jenis EOR yang sesuai untuk memperbaiki efisiensi pendesakan pada reservoir. Surfaktan merupakan zat aktif yang dapat menurunkan tegangan antar muka air-minyak sehingga tekanan kapiler pada daerah penyempitan pori-pori akan turun yang menyebabkan minyak sisa dapat didesak dan diproduksikan. Injeksi surfaktan dilakukan untuk mengoptimalkan injeksi air yang telah dilakukan sebelumnya. Dari injeksi surfaktan yang dilakukan ini diharapkan dapat mendesak minyak dan mendapatkan peningkatan recovery. Tahap pertama pada penelitian ini adalah dengan melakukan uji core flooding pada sampel batuan reservoir dan Surfaktan “B”. Dari hasil core flooding dilakukan sensitivitas trapping number dengan menggunakan simulator. Parameter Trapping Number diperlukan untuk mengetahui proses perubahan wetabilitas yang terjadi di reservoar akibat dilakukannya injeksi surfaktan. Untuk selanjutnya parameter tersebut digunakan sebagai input pada skenario pengembangan Lapangan “X”. Pada uji sensitivitas trapping number didapatkan besarnya DTRAPW dan DTRAPN sebelum dan sesudah injeksi surfaktan masing-masing sebesar -5 dan -2. Peningkatan recovery factor yang didapat dari uji core flooding adalah sebesar 9,25% dan hasil dari simulasi reservoir Lapangan “X” setelah dilakukan sensitivitas trapping number menunjukkan hasil yang mendekati yaitu sebesar 9.77%.


Author(s):  
A. Koto

The objective of this paper is to determine the optimum anaerobic-thermophilic bacterium injection (Microbial Enhanced Oil Recovery) parameters using commercial simulator from core flooding experiments. From the previous experiment in the laboratory, Petrotoga sp AR80 microbe and yeast extract has been injected into core sample. The result show that the experiment with the treated microbe flooding has produced more oil than the experiment that treated by brine flooding. Moreover, this microbe classified into anaerobic thermophilic bacterium due to its ability to live in 80 degC and without oxygen. So, to find the optimum parameter that affect this microbe, the simulation experiment has been conducted. The simulator that is used is CMG – STAR 2015.10. There are five scenarios that have been made to forecast the performance of microbial flooding. Each of this scenario focus on the injection rate and shut in periods. In terms of the result, the best scenario on this research can yield an oil recovery up to 55.7%.


2015 ◽  
pp. 26-30
Author(s):  
A. V. Podnebesnykh ◽  
S. V. Kuznetsov ◽  
V. P. Ovchinnikov

On the example of the group of fields in the West Siberia North the basic types of secondary changes in reservoir rocks are reviewed. Some of the most common types of such changes in the West Siberian plate territory include the processes of zeolitization, carbonation and leaching. These processes have, as a rule, a regional character of distribution and are confined to the tectonically active zones of the earth's crust. Due to formation of different mineral paragenesises the secondary processes differently affect the reservoir rocks porosity and permeability: thus, zeolitization and carbonization promote to reducing the porosity and permeability and leaching improvement. All this, ultimately leads to a change of the oil recovery factor and hydrocarbons production levels. Study and taking into account of the reservoir rocks secondary change processes can considerably influence on placement of operating well stock and on planning of geological and technological actions.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 55-60
Author(s):  
Wenting Dong ◽  
Dong Zhang ◽  
Keliang Wang ◽  
Yue Qiu

AbstractPolymer flooding technology has shown satisfactorily acceptable performance in improving oil recovery from unconsolidated sandstone reservoirs. The adsorption of the polymer in the pore leads to the increase of injection pressure and the decrease of suction index, which affects the effect of polymer flooding. In this article, the water and oil content of polymer blockages, which are taken from Bohai Oilfield, are measured by weighing method. In addition, the synchronous thermal analyzer and Fourier transform infrared spectroscopy (FTIR) are used to evaluate the composition and functional groups of the blockage, respectively. Then the core flooding experiments are also utilized to assess the effect of polymer plugs on reservoir properties and optimize the best degradant formulation. The results of this investigation show that the polymer adsorption in core after polymer flooding is 0.0068 g, which results in a permeability damage rate of 74.8%. The degradation ability of the agent consisting of 1% oxidizer SA-HB and 10% HCl is the best, the viscosity of the system decreases from 501.7 to 468.5 mPa‧s.


Sign in / Sign up

Export Citation Format

Share Document