Influence of oil viscosity changing during the contact with water on the oil recovery factor

Author(s):  
A.S. Topolnikov ◽  
◽  
D.S. Gulishov ◽  
Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3671 ◽  
Author(s):  
Ahmed Mahmoud ◽  
Salaheldin Elkatatny ◽  
Weiqing Chen ◽  
Abdulazeez Abdulraheem

Hydrocarbon reserve evaluation is the major concern for all oil and gas operating companies. Nowadays, the estimation of oil recovery factor (RF) could be achieved through several techniques. The accuracy of these techniques depends on data availability, which is strongly dependent on the reservoir age. In this study, 10 parameters accessible in the early reservoir life are considered for RF estimation using four artificial intelligence (AI) techniques. These parameters are the net pay (effective reservoir thickness), stock-tank oil initially in place, original reservoir pressure, asset area (reservoir area), porosity, Lorenz coefficient, effective permeability, API gravity, oil viscosity, and initial water saturation. The AI techniques used are the artificial neural networks (ANNs), radial basis neuron networks, adaptive neuro-fuzzy inference system with subtractive clustering, and support vector machines. AI models were trained using data collected from 130 water drive sandstone reservoirs; then, an empirical correlation for RF estimation was developed based on the trained ANN model’s weights and biases. Data collected from another 38 reservoirs were used to test the predictability of the suggested AI models and the ANNs-based correlation; then, performance of the ANNs-based correlation was compared with three of the currently available empirical equations for RF estimation. The developed ANNs-based equation outperformed the available equations in terms of all the measures of error evaluation considered in this study, and also has the highest coefficient of determination of 0.94 compared to only 0.55 obtained from Gulstad correlation, which is one of the most accurate correlations currently available.


2021 ◽  
pp. 1-30
Author(s):  
Yu Shi ◽  
Yanan Ding ◽  
Qianghan Feng ◽  
Daoyong Yang

Abstract In this study, a systematical technique has been developed to experimentally and numerically evaluate the displacement efficiency in heavy oil reservoirs with enzyme under different conditions. Firstly, dynamic interfacial tensions (IFTs) between enzyme solution and heavy oil are measured with a pendant-drop tensiometer, while effects of pressure, temperature, enzyme concentration, and contact time of enzyme and heavy oil on equilibrium IFT were systematically examined and analyzed. After waterflooding, enzyme flooding was carried out in sandpacks to evaluate its potential to enhance heavy oil recovery at high water-cut stage. Numerical simulation was then performed to identify the underlying mechanisms accounting for the enzyme flooding performance. Subsequently, a total of 18 scenarios were designed to simulate and examine effects of the injection modes and temperature on oil recovery. Except for pressure, temperature, enzyme concentration, and contact time are found to impose a great impact on the equilibrium IFTs, i.e., a high temperature, a high enzyme concentration, and a long contact time reduce the equilibrium IFTs. All three enzyme flooding tests with different enzyme concentrations show the superior recovery performance in comparison to that of pure waterflooding. In addition to the IFT reduction, modification of relative permeability curves is found to be the main reason responsible for further mobilizing the residual heavy oil. A large slug size of enzyme solution usually leads to a high recovery factor, although its incremental oil production is gradually decreased. Plus, temperature is found to have a great effect on the recovery factor of enzyme flooding likely owing to reduction of both oil viscosity and IFT.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zhijie Wei ◽  
Yuyang Liu ◽  
Xiaodong Kang

Low primary recovery factor and rapid production decline necessitates the proposal of enhanced oil recovery methods to mobilize the remaining oil resource of tight reservoirs, especially for oil-wet ones, and wettability alteration by injecting a chemical agent such as a surfactant is a promising option. A discrete-fracture-network-based mathematical model is developed with consideration of the displacement mechanisms and complicated physical-chemical phenomena during EOR by wettability alteration, and this model numerically solved by the fully implicit method. Simulation cases are conducted to investigate the production performance and key factors of cyclic injection of a surfactant. Cyclic injection can significantly improve the production of oil-wet tight reservoirs, and the ultimate recovery factor can be increased by 10 percent. The reason is that a surfactant can alter the wettability of a reservoir from oil wet to medium or even water wet, which triggers spontaneous imbibition and favors oil movement from a matrix into a fracture. Better EOR results can be achieved with decreasing oil viscosity, increasing matrix permeability, or decreasing fracture spacing. Cyclic surfactant injection is applicable to reservoirs with an oil viscosity of less than 7 mPa·s, a matrix permeability bigger than 0.01 mD, or a fracture spacing smaller than 150 m. It is favorable for the wettability alteration method by maintaining capillary pressure and reducing residual oil saturation as much as possible.


2019 ◽  
Vol 8 (1) ◽  
pp. 33-39
Author(s):  
Indri Kusumastuti ◽  
Tomi Erfando ◽  
Fiki Hidayat

The main principle of steam flooding is to reduce the oil viscosity using hot steam that is injected into the reservoir. In the field implementation there are several injection patterns that can be applied for steam flooding. This research aims to determine the effect of several injection patterns and steam quality on oil recovery factor. Therefore, it can be known the injection pattern and steam quality are right to obtain the best recovery factor. Analysis was carried out on injection patterns including five-spots, inverted five-spots, seven-spots, inverted seven-spots, nine-spots, and inverted nine-spots. The variations in the steam quality used are 50%, 70% and 90%. The simulation model a 3-dimensional cartesian with grid block size 5x5x5 on CMG STARS. The parameters in this steam flooding scenario are temperature at 450° F, injection pressure of 500 psi, and injection rate of 1000 bbl /day. Of all the scenarios tested the best results were in the inverted seven spot pattern with steam quality 0.9, where recovery factor was 35,1% and total cumulative production was 269397 bbl.


2015 ◽  
pp. 26-30
Author(s):  
A. V. Podnebesnykh ◽  
S. V. Kuznetsov ◽  
V. P. Ovchinnikov

On the example of the group of fields in the West Siberia North the basic types of secondary changes in reservoir rocks are reviewed. Some of the most common types of such changes in the West Siberian plate territory include the processes of zeolitization, carbonation and leaching. These processes have, as a rule, a regional character of distribution and are confined to the tectonically active zones of the earth's crust. Due to formation of different mineral paragenesises the secondary processes differently affect the reservoir rocks porosity and permeability: thus, zeolitization and carbonization promote to reducing the porosity and permeability and leaching improvement. All this, ultimately leads to a change of the oil recovery factor and hydrocarbons production levels. Study and taking into account of the reservoir rocks secondary change processes can considerably influence on placement of operating well stock and on planning of geological and technological actions.


2021 ◽  
Author(s):  
Valentina Zharko ◽  
Dmitriy Burdakov

Abstract The paper presents the results of a pilot project implementing WAG injection at the oilfield with carbonate reservoir, characterized by low efficiency of traditional waterflooding. The objective of the pilot project was to evaluate the efficiency of this enhanced oil recovery method for conditions of the specific oil field. For the initial introduction of WAG, an area of the reservoir with minimal potential risks has been identified. During the test injections of water and gas, production parameters were monitored, including the oil production rates of the reacting wells and the water and gas injection rates of injection wells, the change in the density and composition of the produced fluids. With first positive results, the pilot area of the reservoir was expanded. In accordance with the responses of the producing wells to the injection of displacing agents, the injection rates were adjusted, and the production intensified, with the aim of maximizing the effect of WAG. The results obtained in practice were reproduced in the simulation model sector in order to obtain a project curve characterizing an increase in oil recovery due to water-alternating gas injection. Practical results obtained during pilot testing of the technology show that the injection of gas and water alternately can reduce the water cut of the reacting wells and increase overall oil production, providing more efficient displacement compared to traditional waterflooding. The use of WAG after the waterflooding provides an increase in oil recovery and a decrease in residual oil saturation. The water cut of the produced liquid decreased from 98% to 80%, an increase in oil production rate of 100 tons/day was obtained. The increase in the oil recovery factor is estimated at approximately 7.5% at gas injection of 1.5 hydrocarbon pore volumes. Based on the received results, the displacement characteristic was constructed. Methods for monitoring the effectiveness of WAG have been determined, and studies are planned to be carried out when designing a full-scale WAG project at the field. This project is the first pilot project in Russia implementing WAG injection in a field with a carbonate reservoir. During the pilot project, the technical feasibility of implementing this EOR method was confirmed, as well as its efficiency in terms of increasing the oil recovery factor for the conditions of the carbonate reservoir of Eastern Siberia, characterized by high water cut and low values of oil displacement coefficients during waterflooding.


2013 ◽  
Vol 275-277 ◽  
pp. 496-501
Author(s):  
Fu Qing Yuan ◽  
Zhen Quan Li

According to the geological parameters of Shengli Oilfield, sweep efficiency of chemical flooding was analyzed according to injection volume, injection-production parameters of polymer flooding or surfactant-polymer compound flooding. The orthogonal design method was employed to select the important factors influencing on expanding sweep efficiency by chemical flooding. Numerical simulation method was utilized to analyze oil recovery and sweep efficiency of different flooding methods, such as water flooding, polymer flooding and surfactant-polymer compound flooding. Finally, two easy calculation models were established to calculate the expanding degree of sweep efficiency by polymer flooding or SP compound flooding than water flooding. The models were presented as the relationships between geological parameters, such as effective thickness, oil viscosity, porosity and permeability, and fluid parameters, such as polymer-solution viscosity and oil-water interfacial tension. The precision of the two models was high enough to predict sweep efficiency of polymer flooding or SP compound flooding.


2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Zhanxi Pang ◽  
Peng Qi ◽  
Fengyi Zhang ◽  
Taotao Ge ◽  
Huiqing Liu

Heavy oil is an important hydrocarbon resource that plays a great role in petroleum supply for the world. Co-injection of steam and flue gas can be used to develop deep heavy oil reservoirs. In this paper, a series of gas dissolution experiments were implemented to analyze the properties variation of heavy oil. Then, sand-pack flooding experiments were carried out to optimize injection temperature and injection volume of this mixture. Finally, three-dimensional (3D) flooding experiments were completed to analyze the sweep efficiency and the oil recovery factor of flue gas + steam flooding. The role in enhanced oil recovery (EOR) mechanisms was summarized according to the experimental results. The results show that the dissolution of flue gas in heavy oil can largely reduce oil viscosity and its displacement efficiency is obviously higher than conventional steam injection. Flue gas gradually gathers at the top to displace remaining oil and to decrease heat loss of the reservoir top. The ultimate recovery is 49.49% that is 7.95% higher than steam flooding.


Sign in / Sign up

Export Citation Format

Share Document