IMPLEMENTASI PENGONTROLAN TEGANGAN KELUARAN DC STEP-UP ZETA CONVERTER DENGAN VARIASI TEGANGAN INPUT DARI SINGLE PV MENGGUNAKAN LOGIKA FUZZY

Foristek ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Irwan Mahmudi ◽  
Jumiyatun Jumiyatun ◽  
M. Reza P.

The solar panel is a device that functions as a producer of electrical energy by converting solar energy into electrical energy but have several disadvantages, one of which is the non-constant output voltage due to the influence of light intensity and surface temperature of the panel. In this research, Zeta  Converter will be designed and implemented as a tool that plays a role in maintaining the output voltage of solar panels to remain constant at 24V DC, with Fuzzy Logic Control as a method in controlling PWM switching. The results obtained from this study are that zeta converter can keep the output voltage of solar panels constant at a value of 24V, with a low ripple voltage and overshoot. The fuzzy logic method used can produce a constant output voltage with a rise time around 5 seconds. The efficiency obtained from this converter hardware is around 70% - 73%.

Foristek ◽  
2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Irwan Mahmudi ◽  
Jumiyatun Jumiyatun ◽  
Kadri Kadri

Resulting output voltage is not constant due to light intensity and surface temperature of the solar panels. To overcome the output voltage of solar panels that tends to fluctuate, is to add a DC-DC converter to the output side of the DC-DC Converter used in this study is the Quadratic Boost Converter type which has a role to increase the output voltage of the monocrystalline type solar panel so that it remains constant at 24V DC. using Mamdani Fuzzy Logic Control as a method of controlling PWM switching. The results obtained from this study are that the quadratic boost converter can keep the output voltage of the solar panel constant at 24V, with low ripple voltage and overshoot. The Mamdani fuzzy logic method used can produce a constant output voltage value with a rise time of ± 5 seconds. The efficiency obtained from this converter hardware is quite good, ranging from 76% - 88%.


2019 ◽  
Vol 59 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Erol Can

A 9-level inverter with a boost converter has been controlled with a fuzzy logic controller and a PID controller for regulating output voltage applications on resistive (R) and inductive (L), capacitance (C). The mathematical model of this system is created according to the fuzzy logic controlling new high multilevel inverter with a boost converter. The DC-DC boost converter and the multi-level inverter are designed and explained, when creating a mathematical model after a linear pulse width modulation (LPWM), it is preferred to operate the boost multi-level inverter. The fuzzy logic control and the PID control are used to manage the LPWM that allows the switches to operate. The fuzzy logic algorithm is presented by giving necessary mathematical equations that have second-degree differential equations for the fuzzy logic controller. After that, the fuzzy logic controller is set up in the 9-level inverter. The proposed model runs on different membership positions of the triangles at the fuzzy logic controller after testing the PID controller. After the output voltage of the converter, the output voltage of the inverter and the output current of the inverter are observed at the MATLAB SIMULINK, the obtained results are analysed and compared. The results show the demanded performance of the inverter and approve the contribution of the fuzzy logic control on multi-level inverter circuits.


Author(s):  
Imam Wahyu Putra Perkasa ◽  
Fachrudin Hunaini ◽  
Sabar Setiawidayat

In the food processing industry that requires a roasting process using an oven machine, the temperature stability produced by the oven machine greatly affects the output produced. Oven machines that are often used are electric and gas oven machines, the burner control system maximizes the use of gas to fuel the oven engine. This system utilizes input from the DS18B20 temperature sensor which is used to read the temperature in the oven engine. The temperature control of the gas-fired burner control system is carried out by a microcontroller using a fuzzy logic method to control the gas valve in the form of a servo motor to open and close the gas valve automatically. For monitoring and controlling the work of the burner control using Internet of things (IoT) technology by utilizing the NodeMCU ESP8266 microcontroller as a processor and sending data wirelessly to an android smartphone via the BLYNK application which can make it easier for users to get information about actual temperature, setting temperature and timer. By using the fuzzy Sugeno, this system can regulate the gas servo valve with an accuracy rate of 99.93%.


2013 ◽  
Vol 479-480 ◽  
pp. 565-569
Author(s):  
Cong Hui Huang ◽  
Ming Rong Lee ◽  
Yih Feng Su ◽  
Chung Chi Huang ◽  
Yu Tang Su ◽  
...  

In this paper, an intelligent solar panel cleaning system that monitors the output of solar panels is designed. The output voltage of the solar panel is used to decide if the solar panel needs to clean or not. The control system is developed using Lab-VIEW. The direction and position of the system is set by the light sensor, which is parallel to the direction of sunlight. The data from the light sensors, along with the fuzzy logic control software developed using Lab-View determines the control commands for the stepper motors controlling the cleaning process. The commands are stop, forward or reverse and the cleaning process is repeated until the generated power output of the solar panels is sufficient. The cleaning process is performed in real-time to maintain the power generating capacity of the solar cells.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jiexing Wan ◽  
Wei Hua ◽  
Baoan Wang

Advantages of microgrid integrated with a renewable energy system have been acknowledged in more and more applications. Operating steadily during different modes is of great significance, and different modes transferring must be transient, seamless, and reliable to maintain the continuous electricity supply for loads, especially sensitive ones. As a semicontrolled switch that is unable to shut instantly until the zero point of its current, thyristors should be forced to be turned off by certain strategies to minimise the influence brought by the delay of modes transferring. In this paper, a compulsory turn-off strategy based on fuzzy logic control of converter output voltage is proposed. With the strategy, an alterable reverse voltage is applied across the conducting thyristor by dynamically adjusting the output voltage reference instruction and closed-loop control parameters depending on the changing rate rather than detecting the polarity of voltage or current. Constraints from acquisition of analog data and error of digital calculation will be eliminated. Finally, simulation and experimental results verify the effectiveness of the proposed strategy.


Author(s):  
Fachrudin Hunaini ◽  
Imam Robandi ◽  
Nyoman Sutantra

Fuzzy Logic Control (FLC) is a reliable control system for controlling nonlinear systems, but to obtain optimal fuzzy logic control results, optimal Membership Function parameters are needed. Therefore in this paper Particle Swarm Optimization (PSO) is used as a fast and accurate optimization method to determine Membership Function parameters. The optimal control system simulation is carried out on the automatic steering system of the vehicle model and the results obtained are the vehicle's lateral motion error can be minimized so that the movement of the vehicle can always be maintained on the expected trajectory


2019 ◽  
Vol 3 (1) ◽  
pp. 118-126 ◽  
Author(s):  
Prihangkasa Yudhiyantoro

This paper presents the implementation fuzzy logic control on the battery charging system. To control the charging process is a complex system due to the exponential relationship between the charging voltage, charging current and the charging time. The effective of charging process controller is needed to maintain the charging process. Because if the charging process cannot under control, it can reduce the cycle life of the battery and it can damage the battery as well. In order to get charging control effectively, the Fuzzy Logic Control (FLC) for a Valve Regulated Lead-Acid Battery (VRLA) Charger is being embedded in the charging system unit. One of the advantages of using FLC beside the PID controller is the fact that, we don’t need a mathematical model and several parameters of coefficient charge and discharge to software implementation in this complex system. The research is started by the hardware development where the charging method and the combination of the battery charging system itself to prepare, then the study of the fuzzy logic controller in the relation of the charging control, and the determination of the parameter for the charging unit will be carefully investigated. Through the experimental result and from the expert knowledge, that is very helpful for tuning of the  embership function and the rule base of the fuzzy controller.


Sign in / Sign up

Export Citation Format

Share Document