scholarly journals Vascular Endothelial Cadherin-mediated Cell-cell Adhesion Regulated by a Small GTPase, Rap1

BMB Reports ◽  
2006 ◽  
Vol 39 (2) ◽  
pp. 132-139 ◽  
Author(s):  
Shigetomo Fukuhra ◽  
Atsuko Sakurai ◽  
Akiko Yamagishi ◽  
Keisuke Sako ◽  
Naoki Mochizuki
2006 ◽  
Vol 17 (2) ◽  
pp. 966-976 ◽  
Author(s):  
Atsuko Sakurai ◽  
Shigetomo Fukuhara ◽  
Akiko Yamagishi ◽  
Keisuke Sako ◽  
Yuji Kamioka ◽  
...  

Rap1 is a small GTPase that regulates adherens junction maturation. It remains elusive how Rap1 is activated upon cell-cell contact. We demonstrate for the first time that Rap1 is activated upon homophilic engagement of vascular endothelial cadherin (VE-cadherin) at the cell-cell contacts in living cells and that MAGI-1 is required for VE-cadherin-dependent Rap1 activation. We found that MAGI-1 localized to cell-cell contacts presumably by associating with β-catenin and that MAGI-1 bound to a guanine nucleotide exchange factor for Rap1, PDZ-GEF1. Depletion of MAGI-1 suppressed the cell-cell contact-induced Rap1 activation and the VE-cadherin-mediated cell-cell adhesion after Ca2+ switch. In addition, relocation of vinculin from cell-extracellular matrix contacts to cell-cell contacts after the Ca2+ switch was inhibited in MAGI-1-depleted cells. Furthermore, inactivation of Rap1 by overexpression of Rap1GAPII impaired the VE-cadherin-dependent cell adhesion. Collectively, MAGI-1 is important for VE-cadherin-dependent Rap1 activation upon cell-cell contact. In addition, once activated, Rap1 upon cell-cell contacts positively regulate the adherens junction formation by relocating vinculin that supports VE-cadherin-based cell adhesion.


1997 ◽  
Vol 4 (2) ◽  
pp. 267-277 ◽  
Author(s):  
Jahanara Ali ◽  
Fang Liao ◽  
Eric Martens ◽  
William A. Muller

Nanoscale ◽  
2021 ◽  
Author(s):  
Yuan Huang ◽  
Suxiao Wang ◽  
Jin-Zhi Zhang ◽  
Hang-Xing Wang ◽  
Qichao Zou ◽  
...  

Nanomaterial induced endothelial cells leakiness (NanoEL) is caused because nanomaterials enter the interstitial space of endothelial cells and disrupt the endothelial cell-cell interactions by interacting with vascular endothelial cadherin (VE-cad)....


1999 ◽  
Vol 112 (12) ◽  
pp. 1915-1923 ◽  
Author(s):  
P.L. Hordijk ◽  
E. Anthony ◽  
F.P. Mul ◽  
R. Rientsma ◽  
L.C. Oomen ◽  
...  

Vascular endothelial (VE)-cadherin is the endothelium-specific member of the cadherin family of homotypic cell adhesion molecules. VE-cadherin, but not the cell adhesion molecule platelet/endothelial cell adhesion molecule (PECAM-1), markedly colocalizes with actin stress fibers at cell-cell junctions between human umbilical vein endothelial cells. Inhibition of VE-cadherin-mediated, but not PECAM-1-mediated, adhesion induced reorganization of the actin cytoskeleton, loss of junctional VE-cadherin staining and loss of cell-cell adhesion. In functional assays, inhibition of VE-cadherin caused increased monolayer permeability and enhanced neutrophil transendothelial migration. In a complementary set of experiments, modulation of the actin cytoskeleton was found to strongly affect VE-cadherin distribution. Brief stimulation of the beta2-adrenergic receptor with isoproterenol induced a loss of actin stress fibers resulting in a linear, rather than ‘jagged’, VE-cadherin distribution. The concomitant, isoproterenol-induced, reduction in monolayer permeability was alleviated by a VE-cadherin-blocking antibody. Finally, cytoskeletal reorganization resulting from the inactivation of p21Rho caused a diffuse localization of VE-cadherin, which was accompanied by reduced cell-cell adhesion. Together, these data show that monolayer permeability and neutrophil transendothelial migration are modulated by VE-cadherin-mediated cell-cell adhesion, which is in turn controlled by the dynamics of the actin cytoskeleton.


Blood ◽  
1999 ◽  
Vol 93 (4) ◽  
pp. 1253-1263 ◽  
Author(s):  
Masanori Hirashima ◽  
Hiroshi Kataoka ◽  
Satomi Nishikawa ◽  
Norihisa Matsuyoshi ◽  
Shin-Ichi Nishikawa

A primitive vascular plexus is formed through coordinated regulation of differentiation, proliferation, migration, and cell-cell adhesion of endothelial cell (EC) progenitors. In this study, a culture system was devised to investigate the behavior of purified EC progenitors in vitro. Because Flk-1+ cells derived from ES cells did not initially express other EC markers, they were sorted and used as EC progenitors. Their in vitro differentiation into ECs, via vascular endothelial-cadherin (VE-cadherin)+ platelet-endothelial cell adhesion molecule-1 (PECAM-1)+ CD34−to VE-cadherin+ PECAM-1+CD34+ stage, occurred without exogenous factors, whereas their proliferation, particularly at low cell density, required OP9 feeder cells. On OP9 feeder layer, EC progenitors gave rise to sheet-like clusters of Flk-1+ cells, with VE-cadherin concentrated at the cell-cell junction. The growth was suppressed by Flt-1-IgG1 chimeric protein and dependent on vascular endothelial growth factor (VEGF) but not placenta growth factor (PIGF). Further addition of VEGF resulted in cell dispersion, indicating the role of VEGF in the migration of ECs as well as their proliferation. Cell-cell adhesion of ECs in this culture system was mediated by VE-cadherin. Thus, the culture system described here is useful in dissecting the cellular events of EC progenitors that occur during vasculogenesis and in investigating the molecular mechanisms underlying these processes.


Development ◽  
2002 ◽  
Vol 129 (13) ◽  
pp. 3173-3183 ◽  
Author(s):  
James W. Bloor ◽  
Daniel P. Kiehart

The small GTPase Rho is a molecular switch that is best known for its role in regulating the actomyosin cytoskeleton. We have investigated its role in the developing Drosophila embryonic epidermis during the process of dorsal closure. By expressing the dominant negative DRhoAN19 construct in stripes of epidermal cells, we confirm that Rho function is required for dorsal closure and demonstrate that it is necessary to maintain the integrity of the ventral epidermis. We show that defects in actin organization, nonmuscle myosin II localization, the regulation of gene transcription, DE-cadherin-based cell-cell adhesion and cell polarity underlie the effects of DRhoAN19 expression. Furthermore, we demonstrate that these changes in cell physiology have a differential effect on the epidermis that is dependent upon position in the dorsoventral axis. In the ventral epidermis, cells either lose their adhesiveness and fall out of the epidermis or undergo apoptosis. At the leading edge, cells show altered adhesive properties such that they form ectopic contacts with other DRhoAN19-expressing cells. Movies available on-line


Sign in / Sign up

Export Citation Format

Share Document