scholarly journals Design of Portable Multicolor LED-Based Optical System for the Photobiomodulation Therapy on Wound Healing Process

Author(s):  
Nermin Topaloglu Avsar ◽  
Ufuk Balkaya ◽  
Ziysan Buse Yarali Cevik

Photobiomodulation is a practical and noninvasive treatment that triggers cell proliferation, cell differentiation, wound healing, new tissue formation, inflammation and pain reduction with low-level light therapy. Light-emitting diodes (LEDs) are energy-saving, affordable and safe alternatives to laser devices which are recently preferred in photobiomodulation. Although the wavelengths between 600-700 nm are most preferred ones, there is a lack of practical optical systems which study this mechanism in vitro with different wavelengths simultaneously. In this study, a portable and remotely controlled multicolor LED-based system was designed and tested on the wound healing process of human keratinocytes by irradiating the cells homogenously with 3 different wavelengths (460-475 nm as blue, 515-535 nm as green, and 585-595 nm as orange) on different experimental groups at the same time. Its proliferative and wound healing effect was evaluated with cell viability (MTT) analysis and cell migration (scratch) assay, respectively. It was observed that orange-LEDs were designated as the most triggering wavelength in terms of cell proliferation. Also, it was revealed with this device that different wavelengths can reach the intended accelerated wound healing process, so this optical system will be an advantageous design for future practical photobiomodulation studies in vitro.

2021 ◽  
Author(s):  
Nermin Topaloglu ◽  
Ufuk Balkaya ◽  
Ziyşan Buse Yaralı Çevik

Abstract Photobiomodulation is a practical and non-invasive treatment that triggers cell proliferation, cell differentiation, wound healing, new tissue formation, inflammation and pain reduction with low-level light therapy. Light-emitting diodes (LEDs) are energy-saving, affordable and safe alternatives to laser devices which are recently preferred in photobiomodulation. Although the wavelengths between 600-700 nm are most preferred ones, there is a lack of practical optical systems which study this mechanism in vitro with different wavelengths simultaneously. In this study, a portable and remotely controlled multicolor LED-based system was designed and tested on the wound healing process of human keratinocytes by irradiating the cells homogenously with 3 different wavelengths (460-475 nm as blue, 515-535 nm as green, and 585-595 nm as orange) on different experimental groups at the same time. Its proliferative and wound healing effect was evaluated with cell viability (MTT) analysis and cell migration (scratch) assay, respectively. It was observed that orange-LEDs were designated as the most triggering wavelength in terms of cell proliferation. Also, it was revealed with this device that different wavelengths can reach the intended accelerated wound healing process, so this optical system will be an advantageous design for future practical photobiomodulation studies in vitro.


2021 ◽  
Author(s):  
Nermin Topaloglu ◽  
Ufuk Balkaya ◽  
Ziyşan Buse Yaralı Çevik

Abstract Photobiomodulation is a practical and non-invasive treatment that triggers cell proliferation, cell differentiation, wound healing, new tissue formation, inflammation and pain reduction with low-level light therapy. Light-emitting diodes (LEDs) are energy-saving, affordable and safe alternatives to laser devices which are recently preferred in photobiomodulation. Although the wavelengths between 600–700 nm are most preferred ones, there is a lack of practical optical systems which study this mechanism in vitro with different wavelengths simultaneously. In this study, a portable and remotely controlled multicolor LED-based system was designed and tested on the wound healing process of human keratinocytes by irradiating the cells homogenously with 3 different wavelengths (460–475 nm as blue, 515–535 nm as green, and 585–595 nm as orange) on different experimental groups at the same time. Its proliferative and wound healing effect was evaluated with cell viability (MTT) analysis and cell migration (scratch) assay, respectively. It was observed that orange-LEDs were designated as the most triggering wavelength in terms of cell proliferation. Also, it was revealed with this device that different wavelengths can reach the intended accelerated wound healing process, so this optical system will be an advantageous design for future practical photobiomodulation studies in vitro.


2020 ◽  
Author(s):  
Daisuke Ito ◽  
Hiroyasu Ito ◽  
Takayasu Ideta ◽  
Ayumu Kanbe ◽  
Soranobu Ninomiya ◽  
...  

Abstract Background The skin wound healing process is regulated by various cytokines, chemokines, and growth factors. Recent reports have demonstrated that spermine/spermidine (SPD) promote wound healing through urokinase-type plasminogen activator (uPA)/uPA receptor (uPAR) signaling in vitro. Here, we investigated whether the systemic and topical administration of SPD would accelerate the skin wound-repair process in vivo.Methods A skin wound repair model was established using C57BL/6 J mice. SPD was mixed with white petrolatum for topical administration. For systemic administration, SPD mixed with drinking water was orally administered. Changes in wound size over time were calculated using digital photography.Results Systemic and topical SPD treatment significantly accelerated skin wound healing. The administration of SPD promoted the uPA/uPAR pathway in wound sites. Moreover, topical treatment with SPD enhanced the expression of IL-6 and TNF-α in wound sites. Scratch and cell proliferation assays revealed that SPD administration accelerated scratch wound closure and cell proliferation in vitro.Conclusion These results indicate that treatment with SPD promotes skin wound healing through activation of the uPA/uPAR pathway and induction of the inflammatory response in wound sites. The administration of SPD might contribute to new effective treatments to accelerate skin wound healing.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1680
Author(s):  
Chiara Amante ◽  
Tiziana Esposito ◽  
Pasquale Del Del Gaudio ◽  
Veronica Di Di Sarno ◽  
Amalia Porta ◽  
...  

In this paper, alginate/pectin and alginate/pectin/chitosan blend particles, in the form of an in situ forming hydrogel, intended for wound repair applications, have been successfully developed. Particles have been used to encapsulate doxycycline in order to control the delivery of the drug, enhance its antimicrobial properties, and the ability to inhibit host matrix metalloproteinases. The presence of chitosan in the particles strongly influenced their size, morphology, and fluid uptake properties, as well as drug encapsulation efficiency and release, due to both chemical interactions between the polymers in the blend and interactions with the drug demonstrated by FTIR studies. In vitro antimicrobial studies highlighted an increase in antibacterial activity related to the chitosan amount in the powders. Moreover, in situ gelling powders are able to induce a higher release of IL-8 from the human keratinocytes that could stimulate the wound healing process in difficult-healing. Interestingly, doxycycline-loaded particles are able to increase drug activity against MMPs, with good activity against MMP-9 even at 0.5 μg/mL over 72 h. Such results suggest that such powders rich in chitosan could be a promising dressing for exudating wounds.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 631 ◽  
Author(s):  
Paola Franco ◽  
Raffaella Belvedere ◽  
Emanuela Pessolano ◽  
Sara Liparoti ◽  
Roberto Pantani ◽  
...  

In this work, a one-shot process for the simultaneous foaming of polycaprolactone (PCL) and impregnation of mesoglycan (MSG) into the porous structure was successfully attempted. Supercritical carbon dioxide plays the role of the foaming agent with respect to PCL and of the solvent with respect to MSG. The main objective is to produce an innovative topical device for application on skin lesions, promoting prolonged pro-resolving effects. The obtained device offers a protective barrier to ensure a favorable and sterilized environment for the wound healing process. The impregnation kinetics revealed that a pressure of 17 MPa, a temperature of 35 °C, and a time of impregnation of 24 h assured a proper foaming of PCL in addition to the impregnation of the maximum amount of MSG; i.e., 0.22 mgMSG/mgPCL. After a preliminary study conducted on PCL granules used as brought, the MSG impregnation was performed at the optimized process conditions also on a PCL film, produced by compression molding, with the final goal of producing medical patches. Comparing the dissolution profiles in phosphate buffered saline solution (PBS) of pure MSG and MSG impregnated on foamed PCL, it was demonstrated that the release of MSG was significantly prolonged up to 70 times. Next, we performed functional assays of in vitro wound healing, cell invasion, and angiogenesis to evaluate the biological effects of the PCL-derived MSG. Interestingly, we found the ability of this composite system to promote the activation of human keratinocytes, fibroblasts, and endothelial cells, as the main actors of tissue regeneration, confirming what we previously showed for the MSG alone.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Daisuke Ito ◽  
Hiroyasu Ito ◽  
Takayasu Ideta ◽  
Ayumu Kanbe ◽  
Soranobu Ninomiya ◽  
...  

Abstract Background The skin wound healing process is regulated by various cytokines, chemokines, and growth factors. Recent reports have demonstrated that spermine/spermidine (SPD) promote wound healing through urokinase-type plasminogen activator (uPA)/uPA receptor (uPAR) signaling in vitro. Here, we investigated whether the systemic and topical administration of SPD would accelerate the skin wound-repair process in vivo. Methods A skin wound repair model was established using C57BL/6 J mice. SPD was mixed with white petrolatum for topical administration. For systemic administration, SPD mixed with drinking water was orally administered. Changes in wound size over time were calculated using digital photography. Results Systemic and topical SPD treatment significantly accelerated skin wound healing. The administration of SPD promoted the uPA/uPAR pathway in wound sites. Moreover, topical treatment with SPD enhanced the expression of IL-6 and TNF-α in wound sites. Scratch and cell proliferation assays revealed that SPD administration accelerated scratch wound closure and cell proliferation in vitro. Conclusion These results indicate that treatment with SPD promotes skin wound healing through activation of the uPA/uPAR pathway and induction of the inflammatory response in wound sites. The administration of SPD might contribute to new effective treatments to accelerate skin wound healing.


2021 ◽  
Vol 7 (2) ◽  
pp. 295-298
Author(s):  
Jana Markhoff ◽  
Andreas Brietzke ◽  
Niels Grabow

Abstract In vitro wound healing assays are a suitable application to verify the efficiency of pharmaceuticals or growth factors that will be incorporated in or immobilized to e.g. electrospun biomaterials for wound dressings or other biological devices in advance. Thereby, various factors like culture conditions or cell density influence the specific cell proliferation. Hence, to establish a wound healing assay for various cell types, a stepwise adaptation of cell numbers was done for better estimation and comparison of cell density for the validation of the influence of drugs on the wound healing process. Cell proliferation of different tissue relevant cell types was evaluated by impedance measurements and live cell imaging. Cell numbers could be successfully adapted for assay specific cell densities. In general, a universal comparison of biological or chemical materials and agents in vitro may require the creation of appropriate ISO or OECD standards for a consistent and cell specific adaptation or demand of initial cell density.


2004 ◽  
Vol 83 (11) ◽  
pp. 880-885 ◽  
Author(s):  
X.H. Zou ◽  
W.C. Foong ◽  
T. Cao ◽  
B.H. Bay ◽  
H.W. Ouyang ◽  
...  

Chondroitin sulfate is up-regulated in granulation tissue during wound healing. To investigate the role of chondroitin sulfate in the wound-healing process after surgical repair of cleft palate, we isolated and cultured rabbit palatal fibroblasts. Treatment with chondroitin-6-sulfate resulted in a dose-dependent increase in cell adhesion and cell proliferation, whereas the reverse effects were seen after chondroitinase degradation of chondroitin sulfate. The biological actions of chondroitin sulfate appeared to be dependent on the presence and position of sulfate groups. Inhibition of glycosaminoglycan sulfation by chlorate treatment led to reduced cell adhesion and cell proliferation and a slower rate of wound closure in vitro. Furthermore, exposure to chondroitin-4-sulfate resulted in a dose-dependent reduction in cell adhesion. Together, these results show that chondroitin sulfate is involved in palatal wound healing.


2021 ◽  
Vol 22 (8) ◽  
pp. 4087
Author(s):  
Maria Quitério ◽  
Sandra Simões ◽  
Andreia Ascenso ◽  
Manuela Carvalheiro ◽  
Ana Paula Leandro ◽  
...  

Insulin is a peptide hormone with many physiological functions, besides its use in diabetes treatment. An important role of insulin is related to the wound healing process—however, insulin itself is too sensitive to the external environment requiring the protective of a nanocarrier. Polymer-based nanoparticles can protect, deliver, and retain the protein in the target area. This study aims to produce and characterize a topical treatment for wound healing consisting of insulin-loaded poly-DL-lactide/glycolide (PLGA) nanoparticles. Insulin-loaded nanoparticles present a mean size of approximately 500 nm and neutral surface charge. Spherical shaped nanoparticles are observed by scanning electron microscopy and confirmed by atomic force microscopy. SDS-PAGE and circular dichroism analysis demonstrated that insulin preserved its integrity and secondary structure after the encapsulation process. In vitro release studies suggested a controlled release profile. Safety of the formulation was confirmed using cell lines, and cell viability was concentration and time-dependent. Preliminary safety in vivo assays also revealed promising results.


2021 ◽  
Vol 165 ◽  
pp. 39
Author(s):  
Francesca Lombardi ◽  
Silvano Santini ◽  
Paola Palumbo ◽  
Valeria Cordone ◽  
Virginio Bignotti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document