AUTOMATIC KEYWORD EXTRACTION USING ARTIFICIAL NEURAL NETWORK AND FEATURE EXTRACTION

Author(s):  
Son

Extracting keywords from documents is an essential task in natural language processing. A challenge of this task is to define a reasonable set of keywords from which we can find all relevant documents. This paper proposes a new approach that exploits word-level handcrafted features and machine learning models to select a single document's most important keywords. To evaluate the proposed solution, we compare our results with the latest supervised and unsupervised automatic keyword extraction methods. Experiment results show that our model achieves the best results on the 9/20 data corpus. It points out that our proposed approach is promising.

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257069
Author(s):  
Jae-Geum Shim ◽  
Kyoung-Ho Ryu ◽  
Sung Hyun Lee ◽  
Eun-Ah Cho ◽  
Sungho Lee ◽  
...  

Objective To construct a prediction model for optimal tracheal tube depth in pediatric patients using machine learning. Methods Pediatric patients aged <7 years who received post-operative ventilation after undergoing surgery between January 2015 and December 2018 were investigated in this retrospective study. The optimal location of the tracheal tube was defined as the median of the distance between the upper margin of the first thoracic(T1) vertebral body and the lower margin of the third thoracic(T3) vertebral body. We applied four machine learning models: random forest, elastic net, support vector machine, and artificial neural network and compared their prediction accuracy to three formula-based methods, which were based on age, height, and tracheal tube internal diameter(ID). Results For each method, the percentage with optimal tracheal tube depth predictions in the test set was calculated as follows: 79.0 (95% confidence interval [CI], 73.5 to 83.6) for random forest, 77.4 (95% CI, 71.8 to 82.2; P = 0.719) for elastic net, 77.0 (95% CI, 71.4 to 81.8; P = 0.486) for support vector machine, 76.6 (95% CI, 71.0 to 81.5; P = 1.0) for artificial neural network, 66.9 (95% CI, 60.9 to 72.5; P < 0.001) for the age-based formula, 58.5 (95% CI, 52.3 to 64.4; P< 0.001) for the tube ID-based formula, and 44.4 (95% CI, 38.3 to 50.6; P < 0.001) for the height-based formula. Conclusions In this study, the machine learning models predicted the optimal tracheal tube tip location for pediatric patients more accurately than the formula-based methods. Machine learning models using biometric variables may help clinicians make decisions regarding optimal tracheal tube depth in pediatric patients.


2020 ◽  
Vol 34 (05) ◽  
pp. 9250-9257
Author(s):  
Zhiwei Wang ◽  
Hui Liu ◽  
Jiliang Tang ◽  
Songfan Yang ◽  
Gale Yan Huang ◽  
...  

Robust language processing systems are becoming increasingly important given the recent awareness of dangerous situations where brittle machine learning models can be easily broken with the presence of noises. In this paper, we introduce a robust word recognition framework that captures multi-level sequential dependencies in noised sentences. The proposed framework employs a sequence-to-sequence model over characters of each word, whose output is given to a word-level bi-directional recurrent neural network. We conduct extensive experiments to verify the effectiveness of the framework. The results show that the proposed framework outperforms state-of-the-art methods by a large margin and they also suggest that character-level dependencies can play an important role in word recognition. The code of the proposed framework and the major experiments are publicly available1.


Author(s):  
Wangren Qiu ◽  
Zhe Lv ◽  
Yaoqiu Hong ◽  
Jianhua Jia ◽  
Xuan Xiao

Background: As a class of membrane protein receptors, G protein-coupled receptors (GPCRs) are very important for cells to complete normal life function and have been proven to be a major drug target for widespread clinical application. Hence, it is of great significance to find GPCR targets that interact with drugs in the process of drug development. However, identifying the interaction of the GPCR–drug pairs by experimental methods is very expensive and time-consuming on a large scale. As more and more database about GPCR–drug pairs are opened, it is viable to develop machine learning models to accurately predict whether there is an interaction existing in a GPCR–drug pair.Methods: In this paper, the proposed model aims to improve the accuracy of predicting the interactions of GPCR–drug pairs. For GPCRs, the work extracts protein sequence features based on a novel bag-of-words (BOW) model improved with weighted Silhouette Coefficient and has been confirmed that it can extract more pattern information and limit the dimension of feature. For drug molecules, discrete wavelet transform (DWT) is used to extract features from the original molecular fingerprints. Subsequently, the above-mentioned two types of features are contacted, and SMOTE algorithm is selected to balance the training dataset. Then, artificial neural network is used to extract features further. Finally, a gradient boosting decision tree (GBDT) model is trained with the selected features. In this paper, the proposed model is named as BOW-GBDT.Results: D92M and Check390 are selected for testing BOW-GBDT. D92M is used for a cross-validation dataset which contains 635 interactive GPCR–drug pairs and 1,225 non-interactive pairs. Check390 is used for an independent test dataset which consists of 130 interactive GPCR–drug pairs and 260 non-interactive GPCR–drug pairs, and each element in Check390 cannot be found in D92M. According to the results, the proposed model has a better performance in generation ability compared with the existing machine learning models.Conclusion: The proposed predictor improves the accuracy of the interactions of GPCR–drug pairs. In order to facilitate more researchers to use the BOW-GBDT, the predictor has been settled into a brand-new server, which is available at http://www.jci-bioinfo.cn/bowgbdt.


2012 ◽  
Vol 37 (1) ◽  
pp. 43-49 ◽  
Author(s):  
Jing-Yi Guo ◽  
Yong-Ping Zheng ◽  
Hong-Bo Xie ◽  
Terry K Koo

Background: The inherent properties of surface electromyography limit its potential for multi-degrees of freedom control. Our previous studies demonstrated that wrist angle could be predicted by muscle thickness measured from B-mode ultrasound, and hence, it could be an alternative signal for prosthetic control. However, an ultrasound imaging machine is too bulky and expensive. Objective: We aim to utilize a portable A-mode ultrasound system to examine the feasibility of using one-dimensional sonomyography (i.e. muscle thickness signals detected by A-mode ultrasound) to predict wrist angle with three different machine learning models – (1) support vector machine (SVM), (2) radial basis function artificial neural network (RBF ANN), and (3) back-propagation artificial neural network (BP ANN). Study Design: Feasibility study using nine healthy subjects. Methods: Each subject performed wrist extension guided at 15, 22.5, and 30 cycles/minute, respectively. Data obtained from 22.5 cycles/minute trials was used to train the models and the remaining trials were used for cross-validation. Prediction accuracy was quantified by relative root mean square error (RMSE) and correlation coefficients (CC). Results: Excellent prediction was noted using SVM (RMSE = 13%, CC = 0.975), which outperformed the other methods. Conclusion: It appears that one-dimensional sonomyography could be an alternative signal for prosthetic control. Clinical relevance Surface electromyography has inherent limitations that prohibit its full functional use for prosthetic control. Research that explores alternative signals to improve prosthetic control (such as the one-dimensional sonomyography signals evaluated in this study) may revolutionize powered prosthesis design and ultimately benefit amputee patients.


2020 ◽  
Vol 10 (2) ◽  
pp. 1-11
Author(s):  
Evangelos Katsamakas ◽  
Hao Sun

Crowdfunding is a novel and important economic mechanism for funding projects and promoting innovation in the digital economy. This article explores most recent structured and unstructured data from a crowdfunding platform. It provides an in-depth exploration of the data using text analytics techniques, such as sentiment analysis and topic modeling. It uses novel natural language processing to represent project descriptions, and evaluates machine learning models, including neural network models, to predict project fundraising success. It discusses the findings of the performance evaluation, and summarizes lessons for crowdfunding platforms and their users.


2021 ◽  
Author(s):  
Abul Hasan ◽  
Mark Levene ◽  
David Weston ◽  
Renate Fromson ◽  
Nicolas Koslover ◽  
...  

BACKGROUND The COVID-19 pandemic has created a pressing need for integrating information from disparate sources, in order to assist decision makers. Social media is important in this respect, however, to make sense of the textual information it provides and be able to automate the processing of large amounts of data, natural language processing methods are needed. Social media posts are often noisy, yet they may provide valuable insights regarding the severity and prevalence of the disease in the population. In particular, machine learning techniques for triage and diagnosis could allow for a better understanding of what social media may offer in this respect. OBJECTIVE This study aims to develop an end-to-end natural language processing pipeline for triage and diagnosis of COVID-19 from patient-authored social media posts, in order to provide researchers and other interested parties with additional information on the symptoms, severity and prevalence of the disease. METHODS The text processing pipeline first extracts COVID-19 symptoms and related concepts such as severity, duration, negations, and body parts from patients’ posts using conditional random fields. An unsupervised rule-based algorithm is then applied to establish relations between concepts in the next step of the pipeline. The extracted concepts and relations are subsequently used to construct two different vector representations of each post. These vectors are applied separately to build support vector machine learning models to triage patients into three categories and diagnose them for COVID-19. RESULTS We report that Macro- and Micro-averaged F_{1\ }scores in the range of 71-96% and 61-87%, respectively, for the triage and diagnosis of COVID-19, when the models are trained on human labelled data. Our experimental results indicate that similar performance can be achieved when the models are trained using predicted labels from concept extraction and rule-based classifiers, thus yielding end-to-end machine learning. Also, we highlight important features uncovered by our diagnostic machine learning models and compare them with the most frequent symptoms revealed in another COVID-19 dataset. In particular, we found that the most important features are not always the most frequent ones. CONCLUSIONS Our preliminary results show that it is possible to automatically triage and diagnose patients for COVID-19 from natural language narratives using a machine learning pipeline, in order to provide additional information on the severity and prevalence of the disease through the eyes of social media.


2020 ◽  
Author(s):  
Christopher A Hane ◽  
Vijay S Nori ◽  
William H Crown ◽  
Darshak M Sanghavi ◽  
Paul Bleicher

BACKGROUND Clinical trials need efficient tools to assist in recruiting patients at risk of Alzheimer disease and related dementias (ADRD). Early detection can also assist patients with financial planning for long-term care. Clinical notes are an important, underutilized source of information in machine learning models because of the cost of collection and complexity of analysis. OBJECTIVE This study aimed to investigate the use of deidentified clinical notes from multiple hospital systems collected over 10 years to augment retrospective machine learning models of the risk of developing ADRD. METHODS We used 2 years of data to predict the future outcome of ADRD onset. Clinical notes are provided in a deidentified format with specific terms and sentiments. Terms in clinical notes are embedded into a 100-dimensional vector space to identify clusters of related terms and abbreviations that differ across hospital systems and individual clinicians. RESULTS When using clinical notes, the area under the curve (AUC) improved from 0.85 to 0.94, and positive predictive value (PPV) increased from 45.07% (25,245/56,018) to 68.32% (14,153/20,717) in the model at disease onset. Models with clinical notes improved in both AUC and PPV in years 3-6 when notes’ volume was largest; results are mixed in years 7 and 8 with the smallest cohorts. CONCLUSIONS Although clinical notes helped in the short term, the presence of ADRD symptomatic terms years earlier than onset adds evidence to other studies that clinicians undercode diagnoses of ADRD. De-identified clinical notes increase the accuracy of risk models. Clinical notes collected across multiple hospital systems via natural language processing can be merged using postprocessing techniques to aid model accuracy.


2021 ◽  
Author(s):  
Mohammed Ayub ◽  
SanLinn Kaka

Abstract Manual first-break picking from a large volume of seismic data is extremely tedious and costly. Deployment of machine learning models makes the process fast and cost effective. However, these machine learning models require high representative and effective features for accurate automatic picking. Therefore, First- Break (FB) picking classification model that uses effective minimum number of features and promises performance efficiency is proposed. The variants of Recurrent Neural Networks (RNNs) such as Long ShortTerm Memory (LSTM) and Gated Recurrent Unit (GRU) can retain contextual information from long previous time steps. We deploy this advantage for FB picking as seismic traces are amplitude values of vibration along the time-axis. We use behavioral fluctuation of amplitude as input features for LSTM and GRU. The models are trained on noisy data and tested for generalization on original traces not seen during the training and validation process. In order to analyze the real-time suitability, the performance is benchmarked using accuracy, F1-measure and three other established metrics. We have trained two RNN models and two deep Neural Network models for FB classification using only amplitude values as features. Both LSTM and GRU have the accuracy and F1-measure with a score of 94.20%. With the same features, Convolutional Neural Network (CNN) has an accuracy of 93.58% and F1-score of 93.63%. Again, Deep Neural Network (DNN) model has scores of 92.83% and 92.59% as accuracy and F1-measure, respectively. From the pexperiment results, we see significant superior performance of LSTM and GRU to CNN and DNN when used the same features. For robustness of LSTM and GRU models, the performance is compared with DNN model that is trained using nine features derived from seismic traces and observed that the performance superiority of RNN models. Therefore, it is safe to conclude that RNN models (LSTM and GRU) are capable of classifying the FB events efficiently even by using a minimum number of features that are not computationally expensive. The novelty of our work is the capability of automatic FB classification with the RNN models that incorporate contextual behavioral information without the need for sophisticated feature extraction or engineering techniques that in turn can help in reducing the cost and fostering classification model robust and faster.


2020 ◽  
Vol 36 (3) ◽  
pp. 1166-1187 ◽  
Author(s):  
Shohei Naito ◽  
Hiromitsu Tomozawa ◽  
Yuji Mori ◽  
Takeshi Nagata ◽  
Naokazu Monma ◽  
...  

This article presents a method for detecting damaged buildings in the event of an earthquake using machine learning models and aerial photographs. We initially created training data for machine learning models using aerial photographs captured around the town of Mashiki immediately after the main shock of the 2016 Kumamoto earthquake. All buildings are classified into one of the four damage levels by visual interpretation. Subsequently, two damage discrimination models are developed: a bag-of-visual-words model and a model based on a convolutional neural network. Results are compared and validated in terms of accuracy, revealing that the latter model is preferable. Moreover, for the convolutional neural network model, the target areas are expanded and the recalls of damage classification at the four levels range approximately from 66% to 81%.


Sign in / Sign up

Export Citation Format

Share Document