scholarly journals Overexpression of apple spermidine synthase 1 (MdSPDS1) leads to significant salt tolerance in tomato plants

2011 ◽  
Vol 28 (1) ◽  
pp. 33-42 ◽  
Author(s):  
Mohamed Hichem Neily ◽  
Pierre Baldet ◽  
Issam Arfaoui ◽  
Takeshi Saito ◽  
Qiu-li Li ◽  
...  
2019 ◽  
Vol 135 ◽  
pp. 77-86 ◽  
Author(s):  
Mourad Baghour ◽  
Francisco Javier Gálvez ◽  
M. Elena Sánchez ◽  
M. Nieves Aranda ◽  
Kees Venema ◽  
...  

2020 ◽  
Vol 47 (6) ◽  
pp. 4145-4153 ◽  
Author(s):  
Mostapha Maach ◽  
Mourad Baghour ◽  
Mustapha Akodad ◽  
Francisco Javier Gálvez ◽  
María Elena Sánchez ◽  
...  

2008 ◽  
Vol 133 (2) ◽  
pp. 288-297 ◽  
Author(s):  
Alicia Muñoz-Mayor ◽  
Benito Pineda ◽  
Jose O. Garcia-Abellán ◽  
Begoña Garcia-Sogo ◽  
Elena Moyano ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Qiuping Tan ◽  
Shan Jiang ◽  
Ning Wang ◽  
Xiao Liu ◽  
Xinhao Zhang ◽  
...  

The OVATE family protein (OFP) genes (OFPs) have been shown to respond to salt stress in plants. However, the regulatory mechanism for salt tolerance of the peach (Prunus persica) OFP gene PpOFP1 has not been elucidated. In this study, using yeast two-hybrid screening, we isolated a nucleus-localized ZF-HD_dimer domain protein PpZFHD1, which interacts with the PpOFP1 protein in the peach cultivar “Zhongnongpan No.10”. A segmentation experiment further suggested that the interaction happens more specifically between the N-terminal, contains ZF-HD_dimer domain, of PpZFHD1 and the C-terminal, consists of OVATE domain, of PpOFP1. Additionally, quantitative real-time polymerase chain reaction (qRT-PCR) experiments indicate that transcription of these two genes are induced by 200 mmol/L (mM) NaCl treatment. Heterogeneous transformation experiments suggested that the growth status of transformed yeast strain over-expressing each of these two genes was more robust than that of control (CK). Furthermore, transgenic tomato plants over-expressing PpOFP1 were also more robust. They had a higher content of chlorophyll, soluble proteins, soluble sugars, and proline. Activities of the superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in these plants were higher, and tissues from these plants exhibited a lower relative conductivity and malondialdehyde (MDA) content. These results suggest that PpOFP1 physically interacts with PpZFHD1 and confers salt tolerance to tomato and yeast, thus revealing a novel mechanism for regulating salt tolerance in peach and other perennial deciduous trees.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1519
Author(s):  
Yuqing He ◽  
Xiaochun Zhang ◽  
Yinxiao Tan ◽  
Deli Si ◽  
Tingting Zhao ◽  
...  

Previous studies have shown that WRKY transcription factors play important roles in abiotic stress responses. Thus, virus-induced gene silencing (VIGS) was used to identify the function of SlWRKY79 in the salt tolerance of tomato plants by downregulating the expression of the SlWRKY79 gene. Under the same salt treatment conditions, the SlWRKY79-silenced plants showed faster stem wilting and more severe leaf shrinkage than the control plants, and the bending degree of the stem of the SlWRKY79-silenced plants was also greater than that of the control plants. Physiological analyses showed that considerably higher levels of hydrogen peroxide (H2O2), superoxide anion (O2−), and abscisic acid (ABA) accumulated in the leaves of the SlWRKY79-silenced plants than in those of the controls after salt treatment. Taken together, our results suggested that SlWRKY79 plays a positive regulatory role in salt tolerance in tomato plants.


2021 ◽  
Vol 31 ◽  
pp. 101927
Author(s):  
Rita de C. Alves ◽  
Davi R. Rossatto ◽  
Jeferson dos S. da Silva ◽  
Mirela V. Checchio ◽  
Kevein R. de Oliveira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document