scholarly journals Larvicidal Activity of Silver Nanoparticles Synthesized from Azadirachta indica Leaf Extract Against Oryctes rhinoceros (L.) Beetle

2021 ◽  
Vol 10 (2) ◽  
pp. 407-412
Author(s):  
Ganga Gopalakrishnan ◽  
Haritha Cheveliveli Mani ◽  
Sreekutty Thekkeveli Vijayan
2021 ◽  
Vol 19 ◽  
Author(s):  
Moinuzzaman ◽  
Mohammad Abu Hena Mostofa Jamal ◽  
Helal Uddin ◽  
Shahedur Rahman ◽  
Abdul Momin ◽  
...  

Background: In new modern science Nanotechnology is an emerging field for the researchers. Nanotechnology deals with the Nanoparticles. These Nanoparticles have a size of 1-100 nm in one dimension which are important part of biomedical science and medical chemistry, atomic physics, and all other known fields. Nanoparticles are used in broad range due to its small size, orientation, physical properties. Objectives: This study was designed to synthesized Silver nanoparticles using Azadirachta indica (Neem) leaf extract and evaluate biomedical application. Methods: Aqueous extract of Azadirachta indica is used for the synthesis of AgNPs. 1ml of the extract was added to (30- 60) ml of 1mM solution of silver nitrate drop by drop. Silver nanoparticle was characterized by UV-Visible Spectroscopy, Fourier Transform Infrared Spectroscopy, Dynamic Light Scattering Spectroscopy, X-ray Diffraction, Transmission Electron Microscopy, Antibacterial activity studies. Results: The Biological synthesis of Silver nanoparticles (AgNPs) was done by using the aqueous solution of Azadirachta indica leaf extract and AgNO3. A fixed ratio of plant extract to metal ion was used to prepare AgNPs and the formation of the nanoparticles was observed by the color change. The nanoparticles were characterized by UV-vis Spectrophotometer, FTIR, DLS, XRD and TEM. The nanoparticles were found have the size ranges from 30-60 nm. The biosynthesized silver nanoparticles had bactericidal effect against antibiotic resistance pathogenic microorganisms such as Bascillus subtilis, pseudomonas aeruginosa and Bascillus cereus. Conclusion: Silver nanoparticles were synthesized by Azadirachta indica leaf extract can be used as a therapeutic candidate for biomedical applications.


2020 ◽  
Vol 10 (1) ◽  
pp. 267-278 ◽  
Author(s):  
S. B. Santhosh ◽  
D. Natarajan ◽  
P. Deepak ◽  
B. Gayathri ◽  
L. Kaviarasan ◽  
...  

2020 ◽  
Vol 7 (9) ◽  
pp. 200540
Author(s):  
Shafqat Rasool ◽  
Muhammad Akram Raza ◽  
Farkhanda Manzoor ◽  
Zakia Kanwal ◽  
Saira Riaz ◽  
...  

We report here biosynthesis of silver nanoparticles (AgNPs) using aqueous extracts of (i) Azadirachta indica leaves and (ii) Citrullus colocynthis fruit and their larvicidal activity against Aedes aegypti. The UV–Vis spectroscopy absorption peaks occurred in the range of 412–416 nm for A. indica AgNPs and 416–431 nm for C. colocynthis AgNPs indicating the silver nature of prepared colloidal samples. The scanning electron microscopy examination revealed the spherical morphology of both types of NPs with average size of 17 ± 4 nm ( A. indica AgNPs) and 26 ± 5 nm ( C. colocynthis AgNPs). The X-ray diffraction pattern confirmed the face-centred cubic (FCC) structure with crystallite size of 11 ± 1 nm ( A. indica AgNPs) and 15 ± 1 nm ( C. colocynthis AgNPs) while characteristic peaks appearing in Fourier transform infrared spectroscopy analysis indicated the attachment of different biomolecules on AgNPs. The larvicidal activity at different concentrations of synthesized AgNPs (1–20 mg l −1 ) and extracts (0.5–1.5%) against Aedes aegypti was examined for 24 h. A concentration-dependent larvicidal potential of both types of AgNPs was observed. The LC 50 values were found to be 0.3 and 1.25 mg l −1 for C. colocynthis AgNPs and A. indica AgNPs, respectively. However, both extracts did not exhibit any notable larvicidal activity.


2016 ◽  
Vol 43 ◽  
pp. 1-10
Author(s):  
Sekar Saranya ◽  
K. Vijayarani ◽  
K. Ramya ◽  
K. Revathi ◽  
K. Kumanan

Fungal skin infections are caused by different types of fungi among these Malassezia species is the common cause of the dermatitis in human and animals. In the present study, the skin scraping samples were collected from human and dog. The samples were inoculated into Saboraud and potato dextrose broth to achieve the fungal growth. The fungal species were isolated and characterized by colony morphology, potassium hydroxide (KOH) and lacto phenol cotton blue staining. Genomic DNA was isolated and the 28S rRNA was amplified from fungal species using the universal primers and the amplified PCR products were subjected to sequencing. The sequence analysis of 28S rRNA reveals that two sequences were similar to Malassezia globosa and one sequence is similar to Malassezia pachydermatis which causes dermatitis in human and dog, respectively. Further study was carried out to assess the antifungal activity of the silver nanoparticles synthesized through green synthesis using Azadirachta indica leaf extract and characterized by UV-Visible spectrophotometer, Transmission electron microscope (TEM), X-Ray diffraction spectrophotometer (XRD) and Fourier transform infrared spectrophotometer (FTIR). The characterized silver nanoparticles inhibit the growth of Malassezia species by forming zone of clearance. This study suggests that the silver nanoparticles could be an alternative to treat the fungal infections.


2016 ◽  
Vol 10 (6) ◽  
pp. 382-388 ◽  
Author(s):  
Vundru Anil Kumar ◽  
Kandru Ammani ◽  
Rajkumari Jobina ◽  
Paramanandham Parasuraman ◽  
Busi Siddhardha

Sign in / Sign up

Export Citation Format

Share Document