scholarly journals Previously Unknown Physical Formulas which Hold in a Hydrogen Atom and are Derived without Using Quantum Mechanics

2017 ◽  
Vol 9 (4) ◽  
pp. 7
Author(s):  
Koshun Suto

It is thought that quantum mechanics is the physical science describing the behavior of the electron in the micro world, e.g., inside a hydrogen atom. However, the author has previously derived the energy-momentum relationship which holds inside a hydrogen atom. This paper uses that relationship to investigate the relationships between physical quantities which hold in a hydrogen atom. In this paper, formulas are derived which hold in the micro world and make more accurate predictions than the classical quantum theory. This paper concludes that quantum mechanics is not the only theory enabling investigation of the micro world.

2019 ◽  
Vol 11 (1) ◽  
pp. 19
Author(s):  
Koshun Suto

Bohr’s quantum condition is an indispensable assumption for classical quantum theory. However, strictly speaking, Bohr's quantum condition does not hold when deriving the energy of an electron forming a hydrogen atom from the perspective of the theory of relativity. In this paper, it is thought that the relationship enfolded in Bohr's quantum condition, i.e.,  is suitable as a new quantum condition to replace Bohr’s quantum condition. Also, in quantum mechanics, the energy of an electron is derived based on the theory of relativity, as exemplified in the theory of Sommerfeld. However, this paper points out that the previous energy formula based on the theory of relativity is mistaken. It also proposes a previously unknown formula for the kinetic energy of an electron.


1953 ◽  
Vol 5 ◽  
pp. 26-36
Author(s):  
A. E. Scheidegger

The efforts of most theoretical physicists of this century have been directed towards that branch of the physical science which is commonly called “Quantum Theory.” Physically, Quantum Theory was postulated because of a vast amount of physical evidence which led to the postulates of states, observables, superposition, and commutation relations. From these four postulates, all quantum mechanics follows.


2016 ◽  
Vol 14 (04) ◽  
pp. 1640020 ◽  
Author(s):  
Bob Coecke ◽  
Aleks Kissinger

This is the second part of a three-part overview, in which we derive the category-theoretic backbone of quantum theory from a process ontology, treating quantum theory as a theory of systems, processes and their interactions. In this part, we focus on classical–quantum interaction. Classical and quantum systems are treated as distinct types, of which the respective behavioral properties are specified in terms of processes and their compositions. In particular, classicality is witnessed by ‘spiders’ which fuse together whenever they connect. We define mixedness and show that pure processes are extremal in the space of all processes, and we define entanglement and show that quantum theory indeed exhibits entanglement. We discuss the classification of tripartite qubit entanglement and show that both the GHZ-state and the W-state come from spider-like families of processes, which differ only in how they behave when they are connected by two or more wires. We define measurements and provide fully comprehensive descriptions of several quantum protocols involving classical data flow. Finally, we give a notion of ‘genuine quantumness’, from which special processes called ‘phase spiders’ arise, and get a first glimpse of quantum nonlocality.


2015 ◽  
Vol 8 (1) ◽  
pp. 1
Author(s):  
Arkady Bolotin

<p class="1Body">Unlike mathematics, in which the notion of truth might be abstract, in physics, the emphasis must be placed on algorithmic procedures for obtaining numerical results subject to the experimental verifiability. For, a physical science is exactly that: algorithmic procedures (built on a certain mathematical formalism) for obtaining verifiable conclusions from a set of basic hypotheses. By admitting non-constructivist statements, a physical theory loses its concrete applicability and thus verifiability of its predictions. Accordingly, the requirement of constructivism must be indispensable to any physical theory. Nevertheless, in at least some physical theories, and especially in quantum mechanics, one can find examples of non-constructive statements. The present paper demonstrates a couple of such examples dealing with macroscopic quantum states (i.e., with the applicability of the standard quantum formalism to macroscopic systems). As it is shown, in these examples the proofs of the existence of macroscopic quantum states are based on logical principles allowing one to decide the truth of predicates over an infinite number of things.</p>


Author(s):  
Abhay Patil

Abstract: Quantum computing is a cutting edge method of computing that depends on the study of quantum mechanics and its staggering marvels. It is an excellent blend of physical science, arithmetic, computer science and data hypothesis. It gives high computational force, less energy utilization and remarkable speed over old-style computers by controlling the conduct of little actual articles for example minuscule particles like iotas, electrons, photons, and so forth Here, we present a prologue to the crucial ideas and a few thoughts of quantum computing. To comprehend the true abilities and difficulties of a pragmatic quantum computer that can be dispatched financially, the paper covers the engineering, equipment, programming, plan, types and calculations that are explicitly needed by quantum computers. It reveals the ability of quantum computers that can affect our lives in different perspectives like network safety, traffic enhancement, medications, man-made reasoning and some more. Limited scope quantum computers are being grown as of late. This improvement is going towards an incredible future because of their high possible abilities and headways in continuous exploration. Prior to zeroing in on the meanings of a broadly useful quantum computer and investigating the force of the new emerging innovation, it is smarter to survey the beginning, possibilities, and restrictions of the current conventional computing. This data helps us in understanding the potential difficulties in creating outlandish and serious innovation. It will likewise give us an understanding of the continuous advancement in this field. Keywords: Realtime Systems, Programming Processors, Quantum Theory, Quantum Computing


Although the classical electrodynamic theory meets with a considerable amount of success in the description of many atomic phenomena, it fails completely on certain fundamental points. It has long been thought that the way out of this difficulty lies in the fact that there is one basic assumption of the classical theory which is false, and that if this assumption were removed and replaced by something more general, the whole of atomic theory would follow quite naturally. Until quite recently, however, one has had no idea of what this assumption could be. A recent paper by Heisenberg* provides the clue to the solution of this question, and forms the basis of a new quantum theory. According to Heisen­berg, if x and y are two functions of the co-ordinates and momenta of a dyna­mical system, then in general xy is not equal to yx . Instead of the commutative law of multiplication, the canonical variables q r p r ( r = 1... u ) of a system of u degrees of freedom satisfy the quantum conditions, which were given by the author in the form q r q s ― q s q r = 0 p r p s ― p s p r = 0 q r p s ― p s q r = 0 q r p r ― p r q r = ih ( r ≠ s ) } (1) where i is a root of — 1 and h is a real universal constant, equal to (2 π ) -1 times the usual Planck’s constant. These equations are just sufficient to enable one to calculate xy — yx when x and y are given functions of the p’ s and q’ s, and are therefore capable of replacing the classical commutative law of multi­plication. They appear to be the simplest assumptions one could make which would give a workable theory.


Author(s):  
P. A. M. Dirac ◽  
R. Peierls ◽  
M. H. L. Pryce

In a recent paper, Eddington raises an objection against the customary use of the Lorentz transformation in quantum mechanics, as for instance when applied to the theory of the hydrogen atom or the behaviour of a degenerate gas. This objection seems to us to be mainly based on a misunderstanding, and our purpose here is to show that the practice of theoretical physicists on this point is quite consistent. The issue is a little confused because Eddington's system of mechanics is in many important respects completely different from quantum mechanics, and although Eddington's objection is to an alleged illogical practice in quantum mechanics he occasionally makes use of concepts which have no place there. Such arguments will not have any bearing on the question whether or not the practice in quantum mechanics is logically consistent—although they may have bearing on which of the two systems describes physical phenomena better.


Author(s):  
Craig Callender

Two of quantum mechanics’ more famed and spooky features have been invoked in defending the idea that quantum time is congenial to manifest time. Quantum non-locality is said by some to make a preferred foliation of spacetime necessary, and the collapse of the quantum wavefunction is held to vindicate temporal becoming. Although many philosophers and physicists seek relief from relativity’s assault on time in quantum theory, assistance is not so easily found.


Author(s):  
Frank S. Levin

Surfing the Quantum World bridges the gap between in-depth textbooks and typical popular science books on quantum ideas and phenomena. Among its significant features is the description of a host of mind-bending phenomena, such as a quantum object being in two places at once or a certain minus sign being the most consequential in the universe. Much of its first part is historical, starting with the ancient Greeks and their concepts of light, and ending with the creation of quantum mechanics. The second part begins by applying quantum mechanics and its probability nature to a pedagogical system, the one-dimensional box, an analog of which is a musical-instrument string. This is followed by a gentle introduction to the fundamental principles of quantum theory, whose core concepts and symbolic representations are the foundation for most of the subsequent chapters. For instance, it is shown how quantum theory explains the properties of the hydrogen atom and, via quantum spin and Pauli’s Exclusion Principle, how it accounts for the structure of the periodic table. White dwarf and neutron stars are seen to be gigantic quantum objects, while the maximum height of mountains is shown to have a quantum basis. Among the many other topics considered are a variety of interference phenomena, those that display the wave properties of particles like electrons and photons, and even of large molecules. The book concludes with a wide-ranging discussion of interpretational and philosophic issues, introduced in Chapters 14 by entanglement and 15 by Schrödinger’s cat.


Author(s):  
Frank S. Levin

The subject of Chapter 8 is the fundamental principles of quantum theory, the abstract extension of quantum mechanics. Two of the entities explored are kets and operators, with kets being representations of quantum states as well as a source of wave functions. The quantum box and quantum spin kets are specified, as are the quantum numbers that identify them. Operators are introduced and defined in part as the symbolic representations of observable quantities such as position, momentum and quantum spin. Eigenvalues and eigenkets are defined and discussed, with the former identified as the possible outcomes of a measurement. Bras, the counterpart to kets, are introduced as the means of forming probability amplitudes from kets. Products of operators are examined, as is their role underpinning Heisenberg’s Uncertainty Principle. A variety of symbol manipulations are presented. How measurements are believed to collapse linear superpositions to one term of the sum is explored.


Sign in / Sign up

Export Citation Format

Share Document