scholarly journals A Survey of Conceptualizations of Politeness

2015 ◽  
Vol 5 (6) ◽  
pp. 115
Author(s):  
Lei Qiu

<p>Along with the general trends of research from traditional Gricean approach to postmodern approach, politeness has been conceptualized as facework, social indexing concept, relational work and interactional work. Based on examination of debates over East group-oriented and Western individual-oriented politeness, first-order and second-order politeness, as well as the universality and relativity of conceptualizations, this paper has roughly demonstrated that the tension between universality and relativity of politeness can help to explain the reason for lack of uniform definition and concept in this field. It is essential for researchers to seek a universal second-order culture-general theoretical construct on one hand, and to look at first-order culture-specific constructs on the other hand.</p>

2005 ◽  
Vol 13 (S2) ◽  
pp. 3-11 ◽  
Author(s):  
KUNO LORENZ

The concept of symmetry is omnipresent, although originally, in Greek antiquity, distinctly different from the modern logical notion. In logic a binary relation R is called symmetric if xRy implies yRx. In Greek, ‘being symmetric’ in general usage is synonymous with ‘being harmonious’, and in technical usage, as in Euclid's Elements, it is synonymous with ‘commensurable’. Due to the second meaning, which is close to the etymology of συ´μμετρoς, ‘with measure’ has likewise to be read as ‘being [in] rational [ratios]’ and displays the origin of the concept of rationality of establishing a proportion. Heraclitus can be read as a master of such connections. Exercising rationality is a case of simultaneously finding and inventing symmetries. On that basis a proposal is made of how to relate the modern logical notion of symmetry, a second-order concept, on the one hand with modern first-order usages of the term symmetric in geometry and other fields, and on the other hand with the notion of balance that derives from the ancient usage of symmetric. It is argued that symmetries as states of balance exist only in theory, in practice they function as norms vis-à-vis broken symmetries.


1911 ◽  
Vol 30 ◽  
pp. 31-36
Author(s):  
D. M. Y. Sommerville

One of the most plausible of the host of “proofs” that have ever been offered for Euclid's parallel-postulate is that known as Bertrand's, which is based upon a consideration of infinite areas. The area of the whole plane being regarded as an infinity of the second order, the area of a strip of plane surface bounded by a linear segment AB and the rays AA′, BB perpendicular to AB is an infinity of the first order, since a single infinity of such strips is required to cover the plane. On the other hand, the area contained between two intersecting straight lines is an infinity of the same order as the plane, since the plane can be covered by a finite number of such sectors. Hence if AP is drawn making any angle, however small, with AA′, the area A′AP, an infinity of the second order, cannot be contained within the area A′ABB′, an infinity of the first order, and therefore AP must cut BB′. And this is just Euclid's postulate.


1995 ◽  
Vol 74 (6) ◽  
pp. 2665-2684 ◽  
Author(s):  
Y. Kondoh ◽  
Y. Hasegawa ◽  
J. Okuma ◽  
F. Takahashi

1. A computational model accounting for motion detection in the fly was examined by comparing responses in motion-sensitive horizontal system (HS) and centrifugal horizontal (CH) cells in the fly's lobula plate with a computer simulation implemented on a motion detector of the correlation type, the Reichardt detector. First-order (linear) and second-order (quadratic nonlinear) Wiener kernels from intracellularly recorded responses to moving patterns were computed by cross correlating with the time-dependent position of the stimulus, and were used to characterize response to motion in those cells. 2. When the fly was stimulated with moving vertical stripes with a spatial wavelength of 5-40 degrees, the HS and CH cells showed basically a biphasic first-order kernel, having an initial depolarization that was followed by hyperpolarization. The linear model matched well with the actual response, with a mean square error of 27% at best, indicating that the linear component comprises a major part of responses in these cells. The second-order nonlinearity was insignificant. When stimulated at a spatial wavelength of 2.5 degrees, the first-order kernel showed a significant decrease in amplitude, and was initially hyperpolarized; the second-order kernel was, on the other hand, well defined, having two hyperpolarizing valleys on the diagonal with two off-diagonal peaks. 3. The blockage of inhibitory interactions in the visual system by application of 10-4 M picrotoxin, however, evoked a nonlinear response that could be decomposed into the sum of the first-order (linear) and second-order (quadratic nonlinear) terms with a mean square error of 30-50%. The first-order term, comprising 10-20% of the picrotoxin-evoked response, is characterized by a differentiating first-order kernel. It thus codes the velocity of motion. The second-order term, comprising 30-40% of the response, is defined by a second-order kernel with two depolarizing peaks on the diagonal and two off-diagonal hyperpolarizing valleys, suggesting that the nonlinear component represents the power of motion. 4. Responses in the Reichardt detector, consisting of two mirror-image subunits with spatiotemporal low-pass filters followed by a multiplication stage, were computer simulated and then analyzed by the Wiener kernel method. The simulated responses were linearly related to the pattern velocity (with a mean square error of 13% for the linear model) and matched well with the observed responses in the HS and CH cells. After the multiplication stage, the linear component comprised 15-25% and the quadratic nonlinear component comprised 60-70% of the simulated response, which was similar to the picrotoxin-induced response in the HS cells. The quadratic nonlinear components were balanced between the right and left sides, and could be eliminated completely by their contralateral counterpart via a subtraction process. On the other hand, the linear component on one side was the mirror image of that on the other side, as expected from the kernel configurations. 5. These results suggest that responses to motion in the HS and CH cells depend on the multiplication process in which both the velocity and power components of motion are computed, and that a putative subtraction process selectively eliminates the nonlinear components but amplifies the linear component. The nonlinear component is directionally insensitive because of its quadratic non-linearity. Therefore the subtraction process allows the subsequent cells integrating motion (such as the HS cells) to tune the direction of motion more sharply.


Axioms ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 109 ◽  
Author(s):  
Malec

The aim of this article is to present a method of creating deontic logics as axiomatic theories built on first-order predicate logic with identity. In the article, these theories are constructed as theories of legal events or as theories of acts. Legal events are understood as sequences (strings) of elementary situations in Wolniewicz′s sense. On the other hand, acts are understood as two-element legal events: the first element of a sequence is a choice situation (a situation that will be changed by an act), and the second element of this sequence is a chosen situation (a situation that arises as a result of that act). In this approach, legal rules (i.e., orders, bans, permits) are treated as sets of legal events. The article presents four deontic systems for legal events: AEP, AEPF, AEPOF, AEPOFI. In the first system, all legal events are permitted; in the second, they are permitted or forbidden; in the third, they are permitted, ordered or forbidden; and in the fourth, they are permitted, ordered, forbidden or irrelevant. Then, we present a deontic logic for acts (AAPOF), in which every act is permitted, ordered or forbidden. The theorems of this logic reflect deontic relations between acts as well as between acts and their parts. The direct inspiration to develop the approach presented in the article was the book Ontology of Situations by Boguslaw Wolniewicz, and indirectly, Wittgenstein’s Tractatus Logico-Philosophicus.


1993 ◽  
Vol 19 (1) ◽  
Author(s):  
S. M. Van Vuuren ◽  
M. Schepers

The construction and evaluation of a job satisfaction inventory for ministers. Job satisfaction is a multidimensional construct indicating the degree of adjustment of a worker to his work. A questionnaire was constructed for measuring the various aspects of job satisfaction of ministers. It was administered to 307 ministers. First and second order factor analyses were performed on the items of the questionnaire. Three strong factors of the job satisfaction of ministers were identified, viz. satisfaction with the work as such, the minister's experience of the relationships between him and his wife on the one hand, and his church council and congregation on the other hand, and his vocational self concept. The implications of these findings are discussed. Opsomming Werkstevredenheid is 'n meerdimensionele konstruk wat 'n aanduiding gee van die mate waarin 'n werker in sy werk aanpas. 'n Vraelys om verskeie aspekte van die werkstevredenheid van predikante te meet, is gekonstrueer. Dit is op 'n steekproef van 307 predikante toegepas. Eerste- en tweedeorde-faktorontledings is op die items van die vraelys uitgevoer. Drie sterk faktore van die werkstevredenheid van predikante is geidentifiseer, te wete die belewing van sy werk as sodanig, die belewing van die verhouding tussen horn en sy vrou aan die een kant, en die kerkraad en gemeente aan die ander kant, en sy beroepselfkonsep. Die implikasies van die bevindinge word bespreek.


1939 ◽  
Vol 4 (1) ◽  
pp. 1-9 ◽  
Author(s):  
László Kalmár

1. Although the decision problem of the first order predicate calculus has been proved by Church to be unsolvable by any (general) recursive process, perhaps it is not superfluous to investigate the possible reductions of the general problem to simple special cases of it. Indeed, the situation after Church's discovery seems to be analogous to that in algebra after the Ruffini-Abel theorem; and investigations on the reduction of the decision problem might prepare the way for a theory in logic, analogous to that of Galois.It has been proved by Ackermann that any first order formula is equivalent to another having a prefix of the form(1) (Ex1)(x2)(Ex3)(x4)…(xm).On the other hand, I have proved that any first order formula is equivalent to some first order formula containing a single, binary, predicate variable. In the present paper, I shall show that both results can be combined; more explicitly, I shall prove theTheorem. To any given first order formula it is possible to construct an equivalent one with a prefix of the form (1) and a matrix containing no other predicate variable than a single binary one.2. Of course, this theorem cannot be proved by a mere application of the Ackermann reduction method and mine, one after the other. Indeed, Ackermann's method requires the introduction of three auxiliary predicate variables, two of them being ternary variables; on the other hand, my reduction process leads to a more complicated prefix, viz.,(2) (Ex1)…(Exm)(xm+1)(xm+2)(Exm+3)(Exm+4).


2018 ◽  
Vol 382 ◽  
pp. 80-85 ◽  
Author(s):  
Xin Su ◽  
Shu Qiang Guo ◽  
Meng Ran Qiao ◽  
Hong Yan Zheng ◽  
Li Bin Qin

Based on the predecessors of thermodynamic data, the relationship between aluminum contents and oxygen contents of the aluminum deoxidization reaction was calculated. And the influence of activity coefficient to the reaction equilibrium in bearing-steel is analyzed. First-order and second-order interaction coefficients were used to calculate and draw the equilibrium curves, respectively. The effects of different temperature and different interaction parameters on the deoxidization equilibrium curves were studied. And through the curve the influence of the change of aluminum contents to the activity can be known. The trend of the curve with first-order interaction parameters is consistent with the curve with first-order and second-order interaction parameters at the low Al concentration region. And the oxygen contents of curve with first-order interaction parameters are higher than the other curve at the high Al concentration region


1980 ◽  
Vol 47 (1) ◽  
pp. 75-81 ◽  
Author(s):  
R. T. Shield

When a mechanical system has a potential energy, it is a simple matter to show that if the generalized force corresponding to a coordinate p is known to first order in p for a range of the other coordinates of the system, then the other generalized forces can be found immediately to second order in p, without requiring a second-order analysis of the system. By this method the second-order change in the axial force when a finitely extended elastic cylinder is twisted is found from the first-order value of the twisting moment. Numerical results for a realistic form of the strain-energy function for an incompressible material suggest that the second-order expression for the axial force is very accurate for a wide range of twist for circular cylinders of rubber-like materials extended 100 percent or more.


2011 ◽  
Vol 366 (1581) ◽  
pp. 3106-3114 ◽  
Author(s):  
Astrid M. L. Kappers

In this paper, I focus on the role of active touch in three aspects of shape perception and discrimination studies. First an overview is given of curvature discrimination experiments. The most prominent result is that first-order stimulus information (that is, the difference in attitude or slope over the stimulus) is the dominant factor determining the curvature threshold. Secondly, I compare touch under bimanual and two-finger performance with unimanual and one-finger performance. Consistently, bimanual or two-finger performance turned out to be worse. The most likely explanation for the former finding is that a loss of accuracy during intermanual comparisons is owing to interhemispheric relay. Thirdly, I address the presence of strong after-effects after just briefly touching a shape. These after-effects have been measured and studied in various conditions (such as, static, dynamic, transfer to other hand or finger). Combination of the results of these studies leads to the insight that there are possibly different classes of after-effect: a strong after-effect, caused by immediate contact with the stimulus, that does only partially transfer to the other hand, and one much less strong after-effect, caused by moving over the stimulus for a certain period, which shows a full transfer to other fingers.


1991 ◽  
Vol 56 (3) ◽  
pp. 1038-1063 ◽  
Author(s):  
Gaisi Takeuti

In [1] S. Buss introduced systems of bounded arithmetic , , , (i = 1, 2, 3, …). and are first order systems and and are second order systems. and are closely related to and respectively in the polynomial hierarchy, and and are closely related to PSPACE and EXPTIME respectively. One of the most important problems in bounded arithmetic is whether the hierarchy of bounded arithmetic collapses, i.e. whether = or = for some i, or whether = , or whether is a conservative extension of S2 = ⋃i. These problems are relevant to the problems whether the polynomial hierarchy PH collapses or whether PSPACE = PH or whether PSPACE = EXPTIME. It was shown in [4] that = implies and consequently the collapse of the polynomial hierarchy. We believe that the separation problems of bounded arithmetic and the separation problems of computational complexities are essentially the same problem, and the solution of one of them will lead to the solution of the other.


Sign in / Sign up

Export Citation Format

Share Document