scholarly journals Innovative Controller Design for a 5MW Wind Turbine Blade

2018 ◽  
Vol 11 (4) ◽  
pp. 78
Author(s):  
Ranjeet Agarwala ◽  
Robert A. Chin

The development and evaluation of a nonlinear pitch controller for wind turbine blades and the design and modeling of an associated actuator and controller was examined. The pitch actuator and controller were modeled and analyzed using Pneumatically Actuated Muscles (PAMs) for actively pitching the wind turbine blade. PAMs are very light and have a high specific work and a good contraction ratio. Proportional Integral and Derivative (PID) controllers were envisaged for the wind turbine pitching system at the blade tip due to its routine usage in the wind turbine industry. Deployment of controllers enables effective pitch angle tracking for power abatement at various configurations. The controller was subjected to four pitch angle trajectory signals. PID controllers were tuned to achieve satisfactory performance when subjected to the test signal. Low pitch angle errors resulted in satisfactory blade pitch angle tracking. Deployment of these controllers enhances wind turbine performance and reliability. The data suggest that the pitch system and actuator that was modeled using PAMs and PID controllers is effective providing robust pitch angle trajectory tracking. The results suggest that the proposed design can be successfully integrated into the family of wind turbine blade pitch angle controller technologies.

Author(s):  
Jianyou Huang ◽  
Chia-Ou Chang ◽  
Chien-Cheng Chang

Pitch angle is one of the most important parameters of wind turbine blade. This study is aimed to investigate the effect of the pitch angle on the deformation of a VAWT. Lagrangian mechanics and Euler’s beam theory are used to derive the motion equations of linear structural vibration for straight blade vertical axis wind turbine blade with the pitch angle [Formula: see text]. The complete equations of motion take account of the 4-DOF deformation of flexural–flexural–torsion–extension as well as the material damping. Vibration analysis of generalized displacement about the equilibrium state (GDAES) is carried out with respect to the displacement of the equilibrium state (DOES), which is separated from the motion of vibration. After simplifying the equilibrium equation of 4-DOF into 1-DOF system, the exact solution of displacement [Formula: see text] of the equilibrium state is derived. The correction [Formula: see text] of [Formula: see text] due to the pitch angle and the characteristics of [Formula: see text] with constant linear speed are analyzed. Furthermore, we investigate the coupling effect of lateral bending and axial extension of the blade on [Formula: see text] is analyzed. Finally, the exact solution of [Formula: see text] is verified by the central difference method.


2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Qiyue Song ◽  
William David Lubitz

A small wind turbine blade was designed using blade element momentum (BEM) method for a three bladed, fixed pitch 1 kW horizontal axis wind turbine. The new blades were fabricated, fit to a Bergey XL 1.0 turbine, and tested using a vehicle-based platform at the original designed pitch angle, plus with 5 deg and 9 deg of additional pitch. The new blades had better aerodynamic performance than the original Bergey XL 1.0 blades at high speed, but in some cases at lower speeds the original blades performed better. The results demonstrated that selecting the blade pitch angle on a rotor is a tradeoff between starting performance and power output in high winds. The BEM simulations were evaluated against the test data and demonstrated that the BEM simulations predicted the rotor performance with reasonable accuracy.


2021 ◽  
Author(s):  
Alessio Castorrini ◽  
Paolo Venturini ◽  
Fabrizio Gerboni ◽  
Alessandro Corsini ◽  
Franco Rispoli

Abstract Rain erosion of wind turbine blades represents an interesting topic of study due to its non-negligible impact on annual energy production of the wind farms installed in rainy sites. A considerable amount of recent research works has been oriented to this subject, proposing rain erosion modelling, performance losses prediction, structural issues studies, etc. This work aims to present a new method to predict the damage on a wind turbine blade. The method is applied here to study the effect of different rain conditions and blade coating materials, on the damage produced by the rain over a representative section of a reference 5MW turbine blade operating in normal turbulence wind conditions.


Author(s):  
Alka Gupta ◽  
Abdulrahman Alsultan ◽  
R. S. Amano ◽  
Sourabh Kumar ◽  
Andrew D. Welsh

Energy is the heart of today’s civilization and the demand seems to be increasing with our growing population. Alternative energy solutions are the future of energy, whereas the fossil-based fuels are finite and deemed to become extinct. The design of the wind turbine blade is the main governing factor that affects power generation from the wind turbine. Different airfoils, angle of twist and blade dimensions are the parameters that control the efficiency of the wind turbine. This study is aimed at investigating the aerodynamic performance of the wind turbine blade. In the present paper, we discuss innovative blade designs using the NACA 4412 airfoil, comparing them with a straight swept blade. The wake region was measured in the lab with a straight blade. All the results with different designs of blades were compared for their performance. A complete three-dimensional computational analysis was carried out to compare the power generation in each case for different wind speeds. It was found from the numerical analysis that the slotted blade yielded the most power generation among the other blade designs.


2014 ◽  
Vol 1014 ◽  
pp. 124-127
Author(s):  
Zhi Qiang Xu ◽  
Jian Huang

Wind turbines consists of three key parts, namely, wind wheels (including blades, hub, etc.), cabin (including gearboxes, motors, controls, etc.) and the tower and Foundation. Wind turbine wheel is the most important part ,which is made up of blades and hubs. Blade has a good aerodynamic shape, which will produce aerodynamic in the airflow rotation, converting wind energy into mechanical energy, and then, driving the generator into electrical energy by gearbox pace. Wind turbine operates in the natural environment, their load wind turbine blades are more complex. Therefore load calculations and strength analysis for wind turbine design is very important. Wind turbine blades are core components of wind turbines, so understanding of their loads and dynamics by which the load on the wind turbine blade design is of great significance.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Bin Qu ◽  
Zhou Sun ◽  
Fang Feng ◽  
Yan Li ◽  
Guoqiang Tong ◽  
...  

This paper describes the method of preparing strong hydrophobic polypyrrole (PPy) on wind turbine blades. The water contact angle of strong hydrophobic PPy coatings was 127.2°. The strong hydrophobic PPy coatings exhibited excellent anti-icing properties. The maximum icing weight of strong hydrophobic PPy coating blade was almost 0.10 g while the maximum icing weight of no coating blade was found to be 26.13 g. The maximum icing thickness of a strong hydrophobic PPy coating blade was only 1.08 mm. The current research will provide a better technique to create anti-icing coatings on wind turbine blades and other outdoor equipment.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3330 ◽  
Author(s):  
Jianhua Xu ◽  
Zhonghua Han ◽  
Xiaochao Yan ◽  
Wenping Song

A new airfoil family, called NPU-MWA (Northwestern Polytechnical University Multi-megawatt Wind-turbine A-series) airfoils, was designed to improve both aerodynamic and structural performance, with the outboard airfoils being designed at high design lift coefficient and high Reynolds number, and the inboard airfoils being designed as flat-back airfoils. This article aims to design a multi-megawatt wind turbine blade in order to demonstrate the advantages of the NPU-MWA airfoils in improving wind energy capturing and structural weight reduction. The distributions of chord length and twist angle for a 5 MW wind turbine blade are optimized by a Kriging surrogate model-based optimizer, with aerodynamic performance being evaluated by blade element-momentum theory. The Reynolds-averaged Navier–Stokes equations solver was used to validate the improvement in aerodynamic performance. Results show that compared with an existing NREL (National Renewable Energy Laboratory) 5 MW blade, the maximum power coefficient of the optimized NPU 5 MW blade is larger, and the chord lengths at all span-wise sections are dramatically smaller, resulting in a significant structural weight reduction (9%). It is shown that the NPU-MWA airfoils feature excellent aerodynamic and structural performance for the design of multi-megawatt wind turbine blades.


Sign in / Sign up

Export Citation Format

Share Document