scholarly journals Effect of Holding Time on the Diffusion Behavior at Interface of Dissimilar Metals Joint between Aluminum and Carbon Steel Joint Using Element Promoter

2014 ◽  
Vol 8 (5) ◽  
pp. 1 ◽  
Author(s):  
A. J. Saad ◽  
Triyono Triyono ◽  
A. Supriyanto ◽  
N. Muhayat ◽  
Z. Yuliadi

Holding time is used for optimizing the bond diffusion between aluminum Al and Carbon steel SS400. The objective of this research was to investigate the effects of holding time on the interface reactions of diffusion welding between aluminum and carbon steel. Holding time variations of 10, 15, 30 and 45 minutes were applied at 950°C using mixture of Cu and Fe powder as elements promoter. Single lap joint configuration was performed in vacum furnace to join the dissimilar materials which allowed bonding diffusion. Microstructure was examined on the same test piece. It was found that during diffusion process at 950°C, the interfacial zone between aluminum and carbon steel substrate features intermetallic layers. The intermetallic thickness increased with increasing the holding time. Crack or incomplete bonding appeared on the specimens with holding time up to 30 minutes and didn’t appear on the specimens with holding time of 45 minutes. Cu rich-element promoter made diffusion penetrated deeper than Fe rich-element promoter in the same holding time. Macrostructure, microstructure and SEM examinations revealed that Al-steel joint had the best result with element promoter content of 60/40 % at 45 minutes holding time. There was no interlayer gap at this specimen. Additionally, from mapping view it can be suggested that in terms of poor interface bonding, Cu molecules were located just around the interface area, on the other hand, in case of strong interface bonding, Cu molecules are scattered throughout the specimen. In fact, the position of Cu molecules can be used as a promising marker for the detection of quality of diffusion joint.

2019 ◽  
Vol 24 (4) ◽  
pp. 51-58
Author(s):  
Le Hong Quan ◽  
Nguyen Van Chi ◽  
Mai Van Minh ◽  
Nong Quoc Quang ◽  
Dong Van Kien

The study examines the electrochemical properties of a coating based on water sodium silicate and pure zinc dust (ZSC, working title - TTL-VN) using the Electrochemical Impedance Spectra (EIS) with AutoLAB PGSTAT204N. The system consists of three electrodes: Ag/AgCl (SCE) reference electrode in 3 M solution of KCl, auxiliary electrode Pt (8x8 mm) and working electrodes (carbon steel with surface treatment up to Sa 2.5) for determination of corrosion potential (Ecorr) and calculation of equivalent electric circuits used for explanation of impedance measurement results. It was shown that electrochemical method is effective for study of corrosion characteristics of ZSC on steel. We proposed an interpretation of the deterioration over time of the ability of zinc particles in paint to provide cathodic protection for carbon steel. The results show that the value of Ecorr is between -0,9 and -1,1 V / SCE for ten days of diving. This means that there is an electrical contact between the zinc particles, which provides good cathodic protection for the steel substrate and most of the zinc particles were involved in the osmosis process. The good characteristics of the TTL-VN coating during immersion in a 3,5% NaCl solution can also be explained by the preservation of corrosive zinc products in the coating, which allows the creation of random barrier properties.


2011 ◽  
Vol 686 ◽  
pp. 569-573 ◽  
Author(s):  
Ming Feng Tan ◽  
Wan Chang Sun ◽  
Lei Zhang ◽  
Quan Zhou ◽  
Jin Ding

Electroless Ni-P coating containing ZrO2particles was successfully co-deposited on low carbon steel substrate. The surface and cross-sectional micrographs of the composite coatings were observed with scanning electron microscopy (SEM). And the chemical composition of the coating was analyzed with energy dispersive spectroscopy (EDS). The oxidation resistance was evaluated by weight gains during high temperature oxidation test. The results showed that the embedded ZrO2particles with irregular shape uniformly distributed in the entire Ni-P matrix, and the coating showed a good adhesion to the substrate. The weight gain curves of Ni-P-ZrO2composite coatings and Ni-P coating at 923K oxidation experiments were in accordance with . The ZrO2particles in Ni-P matrix could significantly enhance the high temperature oxidation resistance of the carbon steel substrate as compared to pure Ni-P coating.


2013 ◽  
Vol 734-737 ◽  
pp. 2269-2272
Author(s):  
Hong Mei Zhu ◽  
Shu Mei Lei ◽  
Tong Chun Kuang

In this paper, a low carbon steel was used as the substrate to prepare the carbon nanostructural materials by the oxygen-acetylene flame method. The experimental results show that the composite products including nodular carbon nanoparticles and amorphous carbon were obtained on the substrate after a mechanical polishing pretreatment. Comparatively, the short tubular carbon nanofibers with the diameter of around 100 nm were deposited on the substrate pretreated by dipping in the concentrated nitric acid solution. The possible mechanism for the growth of such carbon nanofibers was discussed.


2018 ◽  
Vol 10 (11) ◽  
pp. 168781401881101 ◽  
Author(s):  
Yaliang Liu ◽  
Yibo Sun ◽  
Yang Sun ◽  
Hongji Xu ◽  
Xinhua Yang

Spot welding of dissimilar materials can utilize the respective advantage comprehensively, of which reliable prediction of fatigue life is the key issue in the structure design and service process. Taking into account almost all the complex factors that have effects on the fatigue behavior such as load level, thickness, welding nugget diameter, vibrational frequency, and material properties, this article proposed an energy dissipation-based method that is able to predict the fatigue life for spot-welded dissimilar materials rapidly. In order to obtain the temperature gradient, the temperature variations of four-group spot-welded joint of SUS301 L-DLT stainless steel and Q235 carbon steel during high-cycle fatigue tests were monitored by thermal infrared scanner. Specifically, temperature variation disciplines of specimen surface were divided into four stages: temperature increase, temperature decrease, continuous steady increase in temperature, and ultimate drop after the fracture. The material constant C that a spot-welded joint of dissimilar material needs to reach fracture is 0.05425°C·mm3. When the specimen was applied higher than the fatigue limit, the highest error between experimental values and predicted values is 18.90%, and others are lower than 10%. Therefore, a good agreement was achieved in fatigue life prediction between the new method and the validation test results.


2007 ◽  
Vol 190 (1-3) ◽  
pp. 204-210 ◽  
Author(s):  
B. Uyulgan ◽  
E. Dokumaci ◽  
E. Celik ◽  
I. Kayatekin ◽  
N.F. Ak Azem ◽  
...  

2006 ◽  
Vol 201 (6) ◽  
pp. 3116-3122 ◽  
Author(s):  
K. Raeissi ◽  
M.R. Bateni ◽  
A. Saatchi ◽  
M.A. Golozar ◽  
J.A. Szpunar

Sign in / Sign up

Export Citation Format

Share Document