scholarly journals The Effect of Surface Roughness of End-Mills on Optimal Cutting Performance for High-Speed Machining

2013 ◽  
Vol 59 (2) ◽  
pp. 124-134 ◽  
Author(s):  
Chi-Hsiang Chen ◽  
Yung-Cheng Wang ◽  
Bean-Yin Lee
2007 ◽  
Vol 364-366 ◽  
pp. 1026-1031
Author(s):  
Shen Yung Lin ◽  
S.H. Yu ◽  
M.L. Wu

Different materials coated on milling tools (tungsten carbide) such as TiCN, TiAlN, TiN and DLC are integrated in this study for the analysis of cutting performance such as tool wear, surface roughness and noise induced in high-speed machining of mold steels such as NAK80 and SKD61 under different combinations of cutting conditions. The study attempts to find out the advantages and adaptabilities in various coating materials being suitable for which cutting circumferences with specific performance request. High-speed milling experiments of NAK80 and SKD61 mold steels with four materials coating tools were carried out in the laboratory. The tool wear was measured through the toolmaker’s microscope and the roughness of the machined surface was measured by the roughness measuring instruments after each surface layer was removed from the workpiece in the experiment. Besides, the noise-mediator was used to detect cutting noise during each surface layer workpiece removing of high-speed milling process, and the curl chips removed from the workpiece were also collected for the result verifications. Good surface quality and small amount of tool wear can be achieved under the cutting conditions of high-speed revolutions, small feed rate and small depth of cut for four materials coating tools. From the observations of the annealing temperature from the removed chips and the analysis of the cutting noise levels, TiAlN material coating tool has the better tool life and it is suitable for rougher high-speed machining, while DLC material coating tool only has a good surface roughness in shallow cut and hence it is not suitable for high-speed machining of mold steel with excellent cutting performance request.


2021 ◽  
pp. 107401
Author(s):  
Hewu Sun ◽  
Bin Zou ◽  
Peng Chen ◽  
Chuanzhen Huang ◽  
Guoqiang Guo ◽  
...  

Wear ◽  
2021 ◽  
Vol 472-473 ◽  
pp. 203711
Author(s):  
A.S. Chaus ◽  
M.V. Sitkevich ◽  
P. Pokorný ◽  
M. Sahul ◽  
M. Haršáni ◽  
...  

2013 ◽  
Vol 465-466 ◽  
pp. 642-646 ◽  
Author(s):  
Abu Bakar Mohd Hadzley ◽  
Mohamad Raffi Nurul Fatin ◽  
Raja Abdullah Raja Izamshah ◽  
Nur Izan Syahriah Hussein ◽  
Ahmad Siti Sarah ◽  
...  

The high speed machining (HSM) of gray cast iron for manufacture mold and dies involve many different cutting tool from deep hole drills to smallest ball nose end mills [. Due to the demand of fast and high productivity, high speed machining (HSM) has been increasingly used to produce mold and dies that are mostly used in automotive industry especially for stamping dies components. The process of HSM sometimes combined together with manual polishing to enhance the die surface into fine mirror finish. Although the manual polishing strongly depends by experience and skill of workers, this technique is the preferable option for polishing of moulds and dies. However, such extensive manual polishing will provide some drawback because of many human factors such as pressure and technique of polishing individual person uses. Therefore, the application high speed machining in manufacturing is still demanding as it can improve surface finishing by reducing manual polishing, reportedly account for up to 30% of the total time [2].


Author(s):  
B. Zheng ◽  
H. D. Yu ◽  
X. Wang ◽  
X. M. Lai

Surface scratches and residual stresses inevitably appear on the surface of the component as a result of the machining process. The damage evolution of surface scratch due to the combined effect of cyclic loading and residual stresses will be significantly different from the case where only the cyclic loading is considered. In the damage evolution of surface scratch, the short crack growth is of great importance owing to its apparently anomalous behaviors compared with the long-crack growth. In this paper, the effect of the surface roughness and the residual stress on the short crack growth is studied. Firstly, the surface roughness and the residual stress of 7075-T6 aluminum alloy induced by the high speed milling process with various cutting speeds and feed rates are investigated with the experimental method. The maximum height roughness parameter is measured, which is regarded as the surface defect induced by the milling process. The residual stress on the specimen surface is measured with the X-ray diffraction. Results show that the surface roughness becomes higher with the increase of the feed rate. However, the influence of the cutting speed on the surface roughness is not significant. The residual stresses on the specimen surface are all in the compressive state. The residual stress is more compressive as the feed rate increases. The effects of the process parameters on the surface roughness and the residual stress are described by the fitted formulas. Then a modified model is built to characterize short fatigue crack growth behaviors with the consideration of the residual stress. This model is proved to provide a realistic treatment of the short crack growth, as reflected by comparison with experimental fatigue crack growth data of medium carbon steel and 7075-T6 aluminum alloy published in literature. The effect of surface roughness and residual stress caused by the milling process on the short crack growth is also investigated by using the proposed model. The growth of the scratch is nonlinear when it is subjected to the cyclic load. The compressive residual stress reduces the growth rate of the crack. The crack with larger initial surface roughness grows faster than that with smaller roughness. The correlation of surface roughness, residual stress and crack growth length is obtained by the polynomial fitting. The investigations in this paper can help the damage tolerance design of structures and improve the awareness of the effect of the residual stress and surface roughness induced by the machining process on the short crack growth.


2015 ◽  
Vol 35 (4) ◽  
pp. 292-294
Author(s):  
V. A. Grechishnikov ◽  
I. V. Chulin ◽  
A. I. Isakov

2012 ◽  
Vol 591-593 ◽  
pp. 468-471
Author(s):  
Yong Xia Liu ◽  
Ru Shu Peng ◽  
Qiang Cheng

The advantages and current problems for the application of high-speed machining technology in mold manufacturing are discussed. The requirements of mold high-speed machining for tool paths are summarized. Using the software of Cimatron E7.0,the NC program of the outer mold for a car engine’s V8 intake manifold is analyzed and optimized designed. Programming technology and optional of cutters have been introduced in detail. In the high speed milling stages, using the new cutters, the hardened mold can be machined to reach the required size, shape and surface roughness, and the machining time is reduced greatly. The method of making high speed NC template based on the software Cimatron E7.0. is introduced. Using this method, the maching efficiency is improved greatly, and the mold’ s surface quality better.


Sign in / Sign up

Export Citation Format

Share Document