scholarly journals Fundamentals of Odour Assessment in Slovenia

2020 ◽  
Vol 66 (11) ◽  
pp. 642-654
Author(s):  
Martin Dobeic ◽  
Vincenc Butala ◽  
Matjaž Prek ◽  
Jan Leskovšek ◽  
Žiga Švegelj

From a sociological and economic perspective, odour pollution is one of the most complex problems in the field of air quality. Therefore, various approaches and odour impact criteria are particularly relevant when assessing odour exposure in the areas of different land use. The number of odour assessment methods is limited, and the lack of analytical techniques to determine odour concentration makes odour assessment even more complex. It is essential to analyse the spatial and temporal distribution of odour concentrations in order to assess odour nuisance in the ambient air. Since sampling of odorous air in the field for subsequent determination of odour concentrations in a laboratory by dynamic olfactometry is time-consuming, two approaches are used to assess odour concentrations in ambient air: estimating odour concentration by field inspection and calculation of odour concentrations using atmospheric dispersion models. The latter is the most commonly used technique. Our study aimed to provide fundamentals for an odour regulatory framework in Slovenia. While a multitude of approaches is presently applied to establish odour regulation framework, a broader approach remains lacking. Various odour emission sources were identified to evaluate available methods and techniques to assess odour impact. The impact area was selected to analyse and compare the impact of different odour sources in terms of odour concentration, odour frequency, odour offensiveness, land use, and receptor location. Finally, odour impact criteria were set according to odour offensiveness and concentration, percentile compliance level and land use.From a sociological and economic perspective, odour pollution is one of the most complex problems in the field of air quality. Therefore, various approaches and odour impact criteria are particularly relevant when assessing odour exposure in the areas of different land use. The number of odour assessment methods is limited, and the lack of analytical techniques to determine odour concentration makes odour assessment even more complex. It is essential to analyse the spatial and temporal distribution of odour concentrations in order to assess odour nuisance in the ambient air. Since sampling of odorous air in the field for subsequent determination of odour concentrations in a laboratory by dynamic olfactometry is time-consuming, two approaches are used to assess odour concentrations in ambient air: estimating odour concentration by field inspection and calculation of odour concentrations using atmospheric dispersion models. The latter is the most commonly used technique. Our study aimed to provide fundamentals for an odour regulatory framework in Slovenia. While a multitude of approaches is presently applied to establish odour regulation framework, a broader approach remains lacking. Various odour emission sources were identified to evaluate available methods and techniques to assess odour impact. The impact area was selected to analyse and compare the impact of different odour sources in terms of odour concentration, odour frequency, odour offensiveness, land use, and receptor location. Finally, odour impact criteria were set according to odour offensiveness and concentration, percentile compliance level and land use.

2019 ◽  
Author(s):  
Marco Falocchi ◽  
Werner Tirler ◽  
Lorenzo Giovannini ◽  
Elena Tomasi ◽  
Gianluca Antonacci ◽  
...  

Abstract. The paper describes the dataset of concentrations and related meteorological measurements collected during the field campaign of the Bolzano Tracer Experiment (BTEX). The experiment was performed to characterize the dispersion of pollutants emitted from a waste incinerator in the basin of the city of Bolzano, in the Italian Alps. As part of the experiment two controlled releases of a passive gas tracer (sulfure exafluoride, SF6) were performed through the stack of the incinerator on 14 February 2017 for two different time-lags, starting respectively at 07:00 LST and 12:45 LST. Samples of ambient air were collected at target sites with vacuum-filled glass bottles and polyvinyl fluoride bags, and later analyzed by means of a mass spectrometer (detectability limit 30 pptv). Meteorological conditions were monitored by a network of 15 ground weather stations, 1 microwave temperature profiler, 1 SODAR and 1 Doppler Wind-LIDAR. The dataset represents one of the few examples available in the literature concerning dispersion processes in a typical mountain valley environment and provides a useful benchmark for testing atmospheric dispersion models in complex terrain. The dataset described in this paper is available at https://doi.pangaea.de/10.1594/PANGAEA.898761 (Falocchi et al., 2019).


2001 ◽  
Vol 44 (9) ◽  
pp. 181-188 ◽  
Author(s):  
P. Gostelow ◽  
S.A. Parsons ◽  
J. Cobb

In the field of odour assessment, much attention has been paid to the measurement of odour concentration. Whilst the concentration of an odour at a receptor is a useful indicator of annoyance, the concentration at the source tells only half the story. The emission rate - the product of odour concentration and air flow rate - is required to appreciate the significance of odour sources. Knowledge of emission rates allows odour sources to be ranked in terms of significance and facilitates appropriate selection and design of odour control units. The emission rate is also a key input for atmospheric dispersion models. Given the increasing importance of odour to sewage treatment works operators, there is a clear need for predictive methods for odour emission rates. Theory suggests that the emission of odorants from sewage to air is controlled by mass transfer resistances in both the gas and liquid phase. These are in turn controlled by odorant and emission source characteristics. The required odorant characteristics are largely known, and mass transfer from many different types of emission sources have been studied. Sewage treatment processes can be described by one or more of six characteristic emission sources, these being quiescent surfaces, channels, weirs and drop structures, diffused aeration, surface aeration and flow over media. This paper describes the development of odorant mass transfer models for these characteristic emission types. The models have been applied in the form of spreadsheet models to the prediction of H2S emissions and the results compared with commercial VOC emission models.


2009 ◽  
Vol 9 (3) ◽  
pp. 12413-12464 ◽  
Author(s):  
S. Reis ◽  
R. W. Pinder ◽  
M. Zhang ◽  
G. Lijie ◽  
M. A. Sutton

Abstract. Excess reactive Nitrogen (Nr) has become one of the most pressing environmental problems leading to air pollution, acidification and eutrophication of ecosystems, biodiversity impacts, leaching of nitrates into groundwater and global warming. This paper investigates how current inventories cover emissions of Nr to the atmosphere in Europe, the United States of America, and The People's Republic of China. The focus is on anthropogenic sources, assessing the state-of-the-art of quantifying emissions of Ammonia (NH3), Nitrogen Oxides (NOx) and Nitrous Oxide (N2O), the different purposes for which inventories are compiled, and to which extent current inventories meet the needs of atmospheric dispersion modelling. The paper concludes with a discussion of uncertainties involved and a brief outlook on emerging trends in the three regions investigated is conducted. Key issues are substantial differences in the overall magnitude, but as well in the relative sectoral contribution of emissions in the inventories that have been assessed. While these can be explained by the use of different methodologies and underlying data (e.g. emission factors or activity rates), they may lead to quite different results when using the emission datasets to model ambient air quality or the deposition with atmospheric dispersion models. Hence, differences and uncertainties in emission inventories are not merely of academic interest, but can have direct policy implications when the development of policy actions is based on these model results. The robustness of emission estimates varies greatly between substances, regions and emission source sectors. This has implications for the direction of future research needs and indicates how existing gaps between modelled and measured concentration or deposition rates could be most efficiently addressed. The observed current trends in emissions display decreasing NOx emissions and only slight reductions for NH3 in both Europe and the US. However, in China projections indicate a steep increase of both.


Author(s):  
F. Ike ◽  
I.C. Mbah ◽  
C.R. Otah ◽  
J. Babington ◽  
L. Chikwendu

The land surfaces of hot-humid tropical urban areas are exposed to significant levels of solar radiation. Increased heat gain adds to different land surface temperature profiles in cities, resulting in different thermal discomfort thresholds. Using multi-temporal (1986, 2001, and 2017) landsat data, this study examined the impact of land use change on urban temperature profiles in Umuahia, Nigeria. The findings revealed that over time, built-up regions grow in surface area and temperature at the expense of other land use. The transfer matrix, showed that approximately 59.88 percent of vegetation and 8.23 percent of bareland were respectively changed into built up during the course of 31 years. The highest annual mean temperature in built-up regions was 21.50°C in 1986, 22.20°C in 2001, and 26.01°C in 2017. Transect profiles across the landuses reveals that surface Temperature rises slowly around water/vegetation and quickly over built-up and bare land area. The study observed drastic changes in land cover with a corresponding increase in surface temperature for the period between 1986 and 2017 with consistent decrease in water bodies and bare land in the study area. Overall, the spatio-temporal distribution of surface temperature in densely built up areas was higher than the adjacent rural surroundings, which is evidence of Urban Heat Island. The impact of landuse change on urban surface temperature profiles could provide detailed data to planners and decision makers in evaluating thermal comfort levels and other risk considerations in the study area.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Hikari Shimadera ◽  
Akira Kondo ◽  
Kundan Lal Shrestha ◽  
Ken Kitaoka ◽  
Yoshio Inoue

This study utilized the Weather Research and Forecasting (WRF) model version 3.5.1 to evaluate the impact of urbanization on summertime precipitation in Osaka, Japan. The evaluation was conducted by comparing the WRF simulations with the present land use and no-urban land use (replacing “Urban” with “Paddy”) for August from 2006 to 2010. The urbanization increased mean air temperature by 2.1°C in urban areas because of increased sensible heat flux and decreased mean humidity by 0.8 g kg−1because of decreased latent heat flux. In addition, the urbanization increased duration of the southwesterly sea breeze. The urbanization increased precipitation in urban areas and decreased in the surrounding areas. The mean precipitation in urban areas was increased by 20 mm month−1(27% of the total amount without the synoptic-scale precipitation). The precipitation increase was generally due to the enhancement of the formation and development of convective clouds by the increase in sensible heat flux during afternoon and evening time periods. The urbanization in Osaka changes spatial and temporal distribution patterns of precipitation and evaporation, and consequently it substantially affects the water cycle in and around the urban areas of Osaka.


2009 ◽  
Vol 9 (19) ◽  
pp. 7657-7677 ◽  
Author(s):  
S. Reis ◽  
R. W. Pinder ◽  
M. Zhang ◽  
G. Lijie ◽  
M. A. Sutton

Abstract. Excess reactive Nitrogen (Nr) has become one of the most pressing environmental problems leading to air pollution, acidification and eutrophication of ecosystems, biodiversity impacts, leaching of nitrates into groundwater and global warming. This paper investigates how current inventories cover emissions of Nr to the atmosphere in Europe, the United States of America, and China. The focus is on anthropogenic sources, assessing the state-of-the-art of quantifying emissions of Ammonia (NH3), Nitrogen Oxides (NOx) and Nitrous Oxide (N2O), the different purposes for which inventories are compiled, and to which extent current inventories meet the needs of atmospheric dispersion modelling. The paper concludes with a discussion of uncertainties involved and a brief outlook on emerging trends in the three regions investigated is conducted. Key issues are substantial differences in the overall magnitude, but as well in the relative sectoral contribution of emissions in the inventories that have been assessed. While these can be explained by the use of different methodologies and underlying data (e.g. emission factors or activity rates), they may lead to quite different results when using the emission datasets to model ambient air quality or the deposition with atmospheric dispersion models. Hence, differences and uncertainties in emission inventories are not merely of academic interest, but can have direct policy implications when the development of policy actions is based on these model results. The level of uncertainty of emission estimates varies greatly between substances, regions and emission source sectors. This has implications for the direction of future research needs and indicates how existing gaps between modelled and measured concentration or deposition rates could be most efficiently addressed. The observed current trends in emissions display decreasing NOx emissions and only slight reductions for NH3 in both Europe and the US. However, in China projections indicate a steep increase of both.


2021 ◽  
Vol 13 (17) ◽  
pp. 9638
Author(s):  
Yuan-Bin Cai ◽  
Ke Li ◽  
Yan-Hong Chen ◽  
Lei Wu ◽  
Wen-Bin Pan

With the acceleration of global warming and urbanization, the problem of the thermal environment in urban areas has become increasingly prominent. In this paper, Fuzhou was selected to quantify the impact of land use cover change (LUCC) on land surface temperature (LST). The results showed that from 1993 to 2016, the land use/cover types of the study area changed greatly, especially the change of construction land, which led to an obvious change in the spatial pattern of LST. From 1993 to 2016, the spatial and temporal distribution of LST contributions in Fuzhou was uneven. The central urban area had a positive contribution to the rise of LST, while Minqing and Yongtai had a negative contribution. From the perspective of different land use/land cover types, forest or grass land, cultivated land, and water all made a negative contribution to the increase of surface temperature, while construction land made a positive contribution. Outcomes provided by the multi-distance spatial cluster analysis (Ripley’s K function) showed that there was a scale effect in the concentration and dispersion of LST; from 1993 to 2016, the concentration range of LST in the study area gradually expanded and the degree of concentration increased.


Sign in / Sign up

Export Citation Format

Share Document