scholarly journals Evaluation of Rhododendron Luteum and Rhododendron Ponticum in Pulp and Paper Production

2020 ◽  
Vol 71 (4) ◽  
pp. 365-370
Author(s):  
Emre Birinci ◽  
Ahmet Tutuş ◽  
Mustafa Çiçekler

In this study, Rhododendron luteum and Rhododendron ponticum were evaluated as raw material for pulp and paper production. 12 different sodium borohydride (NaBH4) added cooking trials were performed for each sample and kraft method was used for pulp production. Pulp properties, such as yield, kappa number and viscosity, and physical properties, such as breaking length and burst index, were determined for each trial. Besides, the effects of active alkali and NaBH4 on the pulp and paper properties were also examined. Optimum cooking conditions were obtained by using 18 % active alkali for NaBH4-free cooking experiments and 0.5 % NaBH4 and 18 % active alkali for NaBH4-added cooking experiments. In NaBH4-added pulping condition, the screened yield, kappa number and viscosity of R. luteum were found to be 43.4 %, 40.1 and 949 cm3/g1, respectively. The respective values for R. ponticum were 41.9 %, 44.5 and 885 cm3/g1. The screened yields of R. luteum and R. ponticum increased by about 2.8 % and 5.3 %, respectively, with 5 % addition of NaBH4 compared to NaBH4-free cooking experiments. Furthermore, with the addition of NaBH4, the kappa numbers decreased while the viscosity increased. The physical properties of the produced papers were also improved by using NaBH4 in cooking liquor. According to the obtained results, it was found that R. luteum and R. ponticum species can be evaluated for pulp and paper production.

2012 ◽  
pp. 45-62
Author(s):  
Luz Moreno ◽  
Calixto Protacio

Given the increasing global demand for pulp, there is a need to look into the prospects of increasing fiber production and shortening the harvesting cycle of abaca without sacrificing the quality of fibers for pulp production. This study investigated the chemical and pulp properties of abaca cv. Inosa fibers harvested at different stages of stalk maturity to determine their suitability for pulp and paper production. Fibers obtained from 8-10-month-old (immature) abaca cv. Inosa possessed the desirable chemical properties for pulping, namely; low lignin and ash content, high alpha-cellulose, holocellulose and hemi- cellulose contents; which are comparable with those obtained from intermediate and mature stalks. The average pulp yield, Kappa number, viscosity, tear index and breaking length of pulps from immature stalks were already comparable with those of mature fibers and were even higher than the mature fibers of Linawaan and Laylay cultivars. Fibers of abaca cv. Inosa obtained from immature stalks were thus, found suitable for pulp and paper production.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3673
Author(s):  
Kateřina Hájková ◽  
Jiří Bouček ◽  
Petr Procházka ◽  
Petr Kalous ◽  
Dominik Budský

Because there is a lack of wood resources in many countries, this work focused on pulp and paper production from the waste and agricultural residues of non-wood plants. The work aimed to pulp the nitrate-alkaline of black mustard (Brassica Nigra L.) and camelina (Camelina Sativa L.). The black mustard and the camelina were selected due to the expanding planted areas of these crops in the Czech Republic. To characterize the chemical composition of black mustard and camelina, cellulose, lignin, ash, and extractives were determined. Raw alpha-cellulose, beta-cellulose, and gamma-cellulose were also measured. The results showed that the content of lignin in non-wood plants is lower than that in softwoods. The cooked pulp was characterized by the delignification degree–Kappa number. Additionally, handsheet papers were made for selected samples of pulp. The handsheet papers were characterized by tensile index, breaking length, and smoothness and compared with commonly available papers.


BioResources ◽  
2011 ◽  
Vol 6 (2) ◽  
pp. 971-986
Author(s):  
Juan Carlos García ◽  
Minerva A. M. Zamudio ◽  
Antonio Pérez ◽  
Manuel Javier Feria ◽  
José Lívio Gomide ◽  
...  

A trihybrid clone of Paulownia fortunei x tormentosa x elongata was used for pulp and paper production using the soda-anthraquinone (AQ) process, comparing the results with those from Paulownia fortunei. An autohydrolysis process had been previously carried out on this raw material. A composite central experimental design and a multiple regression were used for modeling and optimizing the process. A valuable liquid phase could be obtained from the autohydrolysis process of Paulownia, trying to minimize cellulose degradation for pulp and paper production. A compromise to maximize the glucan and minimize the xylan contents in the postautohydrolysis solid phase could be achieved at 187.5ºC and 15 minutes. A suitable cellulosic pulp with kappa number ranging from 12.2 to 69.2 and ISO brightness from 18.2 to 30.6% presented better results than those from other studies. Regarding handsheets physical properties (tensile index 37.3 N·m/g ) and viscosity (848 cm3/g), significant improvements could be obtained when compared with previous results of a similar process using Paulownia fortunei or Paulownia elongata.


2018 ◽  
Vol 8 (01) ◽  
pp. 43
Author(s):  
Arini Hidayati Jamil ◽  
Heronimus Judi Tjahjono ◽  
Parnidi Parnidi ◽  
Marjani Marjani

Potential of Two Agave Species for Pulp and Paper MakingAbstractBoth of Agave sisalana and A. cantala are the most favorite agave species for fiber producer plant in Indonesia. Nevertheless, research study for using fiber of A. sisalana and A. cantala for pulp and paper purpose is hard to find. This study aims to observe the characteristics of A. sisalana and A. cantala fibers as a raw material of pulp including fiber morphology, chemical components, pulp characteristics, optical and physical properties of the handsheets. The observation of all characters was based on Indonesian National Standard (SNI). The pulping method used both of soda process with 18% active alkali and kraft process with 18% active alkali and 25% sulfidity. The result of the study for the handsheets from A. sisalana and A. cantala fibers shows that the brightness, dirt, and tear index were fulfilled to SNI standard for NBKP while the tensile index and burst index just fulfilled to SNI standard for LBKP. The handsheet of A. sisalana fiber has a higher tear index, tensile index, and burst index than the A. cantala ones. Soda pulping of both agave species resulting higher pulp yield, cellulose polymerization degrees and physical properties than kraft pulping.Keywords : Agave sisalana, A. cantala, characteristics of the fiber, pulp AbstrakAgave sisalana dan A. cantala merupakan dua spesies agave yang paling banyak dibudidayakan di Indonesia sebagai tanaman penghasil serat alam. Namun penelitian mengenai fungsi serat A. sisalana dan A. cantala sebagai bahan baku pulp dan kertas masih sulit ditemukan. Tujuan dari penelitian ini adalah mempelajari karakteristik serat A. sisalana dan A. cantala sebagai bahan baku pulp yang meliputi morfologi serat, komposisi komponen kimia, karakeristik pulp, sifat optik dan fisik lembaran pulp yang dihasilkan. Pengamatan seluruh karakter dilakukan berdasarkan Standar Nasional Indonesia. Pemasakan menggunakan metode soda dengan alkali aktif 18% dan kraft dengan alkali aktif 18% dan sulfiditas 25%. Hasil pengamatan pada lembaran pulp yang dihasilkan dari serat A. sisalana dan A. cantala menunjukkan bahwa derajat cerah, noda, dan kekuatan sobek memenuhi Standar Nasional Indonesia (SNI) Pulp Kraft Putih Kayujarum (NBKP) sementara kekuatan tarik dan kekuatan retak memenuhi SNI Pulp Krat Putih Kayudaun (LBKP). Lembaran pulp A. sisalana memiliki kekuatan sobek, tarik, dan retak lebih tinggi dibanding lembaran pulp A. cantala. Metode pemasakan soda pada serat kedua spesies agave tersebut menghasilkan rendemen pulp, derajat polimerisasi selulosa, dan kekuatan fisik lebih baik dibanding metode kraft.Kata kunci : Agave sisalana, A. cantala, karakteristik serat, pulp 


2021 ◽  
Vol 55 (7-8) ◽  
pp. 799-807
Author(s):  
PEJMAN REZAYATI-CHARANI ◽  
AHMAD AZIZI MOSSELLO ◽  
MOHAMMAD BERVAIE

The aim of this study was to investigate the effect of using whey powder (different concentrations and treatment repetitions) as a probiotic agent on the quantitative and qualitative properties of stored bagasse intended for use in the pulp and paper industry. For this purpose, whey powder was added in three concentrations and the treatment was applied once or twice. After that, soda pulp was prepared under conventional conditions. Then, handsheets (80 g/m2) were made and tested in terms of paper properties, and the results were compared. The findings revealed that increasing the concentration of whey powder and the number of treatments significantly improved the pulp and paper characteristics, thus, using the treatment with 2% whey powder twice and 0.4% whey powder once led to the best results for bagasse protection in terms of quality of the raw material, pulp and handsheets.


2013 ◽  
Vol 726-731 ◽  
pp. 2695-2698
Author(s):  
Jie Ren ◽  
Chuan Shan Zhao

Because of the public environmental awareness growing and Fibrous raw material shortage, waste paper recycling has received widespread attention, increased year by year. Waste paper fiber through the whole process of pulping and papermaking, different production processes and the use of environment, waste paper fiber can occur in many different changes compared with the original fiber, accordingly the paper properties change.In this study, a high-quality aspen high-yield pulp (HYP) was used to improve the Waste paper pulp properties at the laboratory scale.The results indicate that adding 25% aspen HYP into unrefined or refined Waste paper fiber can minimize many of the drawbacks associated with Waste paper fiber: improving its drainage, bulk, and opacity. And addition of a small amount (about 1%) of cationicstarch can also significantly increase the tensile index of OCC.


2020 ◽  
Vol 1 (2) ◽  
pp. 1-9

The pulp and paper industry is advanced rapidly since there are many types of raw materials containing cellulose fibres that could be used to produce different kinds of paper by different methods in the mills. In Malaysia, one of the abundant non-wood materials for pulp and paper production is empty fruit bunch (EFB) from the oil palm. The EFB is the main fibrous residue and natural fibre which has promising potential as an alternative to replace woody materials. This study provides insight into the use of EFB as an alternative non-wood fibre resource in pulp and paper making. The potential of oil palm EFB transformed into valuable fibre material was elaborated. In this review, detailed information on the properties of EFB for pulp and paper making process to identify the chemical composition and fibre morphology were discussed. Recent advanced applications including nanocellulose from EFB, polymeric hydrogel, and antimicrobial papers were discussed to demonstrate high commercialization for pulp and paper technology. The three-dimensional (3D) printing technique has been employed due to the high complexity of paper products. The future trends and challenges regarding the use of EFB in pulp and paper making were also reviewed. This study demonstrated that the EFB has met the demand of the market chains as a potential raw material in paper making and manufacturing.


BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 7598-7614
Author(s):  
Khaled T. S. Hassan ◽  
El-Sayed A. E. Kandeel ◽  
Ibrahim E. A. Kherallah ◽  
Hosny A. Abou-Gazia ◽  
Fatma M. M. Hassan

The utilization of branchwood as lignocellulosic raw material source for paper production may have the potential of solving the problem of the availability of raw material in the pulp and paper industry. This study therefore compared the chemical composition and fiber morphological indices (according to Franklin’s method) of stemwood and branchwood in Eucalyptus camaldulensis and Pinus halepensis trees grown in Egypt. The statistical analysis showed a significant effect of species, wood type (stem and branchwood), and their interaction on the measured chemical constituents and fiber morphological indices at 0.05 significance level. In both genera, the stemwood exhibited a higher percentage of cellulose and hemicellulose and was lower in lignin, total extractives, and ash than those measured in branchwood. Also in both genera, the stemwood was higher in fiber length, Runkel ratio, rigidity coefficient, Muhlsteph ratio, and Luce’s shape factor, and lower in basic density and flexibility coefficient than those in branchwood. Based on the chemical analysis and the fiber morphological indices, the stemwood and branchwood of both species were suitable for paper production with various qualities. Moreover, good correlations were found in both stem and branchwood between the basic density and the fiber wall thickness and fiber lumen diameter. ln contrast, there was an independent association between the stemwood basic density and the fiber length, and this relationship in branchwood was positive for both genera.


Sign in / Sign up

Export Citation Format

Share Document