scholarly journals Two-dimensional generalized Weyl fractional calculus pertaining to two-dimensional $ \overline{H} $-transforms

2006 ◽  
Vol 37 (3) ◽  
pp. 237-249
Author(s):  
V. B. L. Chaurasia ◽  
Amber Srivastava

The aim of this paper is to establish a relation between the two-dimensional $ \overline{H} $-transform involving a general polynomials and the Weyl type two-dimensional Saigo operator of fractional integration.

2010 ◽  
Vol 41 (2) ◽  
pp. 139-148
Author(s):  
V. B. L. Chaurasia ◽  
Mukesh Agnihotri

The object of this present paper is to derive a relation between the two dimensional I-transform involving a general class of polynomials and the Weyl type two dimensional Saigo operators of fractional integration. The results derived here are general in nature and include the results given earlier by Saigo, Saxena and Ram [10],Saxena and Ram [8], Saxena and Kiryakova [9] and Chaurasia and Srivastava [12].


Filomat ◽  
2016 ◽  
Vol 30 (7) ◽  
pp. 1931-1939 ◽  
Author(s):  
Junesang Choi ◽  
Praveen Agarwal

Recently Kiryakova and several other ones have investigated so-called multiindex Mittag-Leffler functions associated with fractional calculus. Here, in this paper, we aim at establishing a new fractional integration formula (of pathway type) involving the generalized multiindex Mittag-Leffler function E?,k[(?j,?j)m;z]. Some interesting special cases of our main result are also considered and shown to be connected with certain known ones.


Author(s):  
Dumitru Baleanu ◽  
Sami I. Muslih ◽  
Eqab M. Rabei

The fractional Lagrangian and Hamiltonian dynamics is an important issue in fractional calculus area. The classical dynamics can be reformulated in terms of fractional derivatives. The fractional variational principles produce fractional Euler-Lagrange equations and fractional Hamiltonian equations. The fractional dynamics strongly depends of the fractional integration by parts as well as the non-locality of the fractional derivatives. In this paper we present the fractional Hamilton formulation based on Caputo fractional derivatives. One example is treated in details to show the characteristics of the fractional dynamics.


Author(s):  
Ehab Malkawi

The transformation properties of the fractional derivatives under spatial rotation in two-dimensional space and for both the Riemann-Liouville and Caputo definitions are investigated and derived in their general form. In particular, the transformation properties of the fractional derivatives acting on scalar fields are studied and discussed. The study of the transformation properties of fractional derivatives is an essential step for the formulation of fractional calculus in multi-dimensional space. The inclusion of fractional calculus in the Lagrangian and Hamiltonian dynamical formulation relies on such transformation. Specific examples on the transformation of the fractional derivatives of scalar fields are discussed.


2020 ◽  
Vol 4 (3) ◽  
pp. 40
Author(s):  
Jocelyn Sabatier

In the field of fractional calculus and applications, a current trend is to propose non-singular kernels for the definition of new fractional integration and differentiation operators. It was recently claimed that fractional-order derivatives defined by continuous (in the sense of non-singular) kernels are too restrictive. This note shows that this conclusion is wrong as it arises from considering the initial conditions incorrectly in (partial or not) fractional differential equations.


2014 ◽  
Vol 6 (2) ◽  
pp. 247-260 ◽  
Author(s):  
M. H. Heydari ◽  
M. R. Hooshmandasl ◽  
F. Mohammadi

AbstractIn this paper, we develop an accurate and efficient Legendre wavelets method for numerical solution of the well known time-fractional telegraph equation. In the proposed method we have employed both of the operational matrices of fractional integration and differentiation to get numerical solution of the time-telegraph equation. The power of this manageable method is confirmed. Moreover the use of Legendre wavelet is found to be accurate, simple and fast.


Author(s):  
W. Lamb

SynopsisIn this paper, a theory of fractional calculus is developed for certain spacesD′p,μof generalised functions. The theory is based on the construction of fractionalpowers of certain simple differential and integral operators. With the parameter μ suitably restricted, these fractional powers are shown to coincide with the Riemann-Liouville and Weyl operators of fractional integration and differentiation. Standard properties associated with fractional integrals and derivatives follow immediately from results obtained previously by the author on fractional powers of operators; see [6], [7]. Some spectral properties are also obtained.


2013 ◽  
Vol 13 (4) ◽  
pp. 42-53 ◽  
Author(s):  
Nina Nikolova ◽  
Emil Nikolov

Abstract : An essentially new class of repetitive fractional disturbance absorptive filters in disturbances absorbing control systems is proposed in the paper. Systematization of the standard repetitive fractional disturbance absorptive filters of this class is suggested. They use rational approximations of the operators for fractional integration in the theory of fractional calculus. The paper discusses the possibilities for repetitive absorbing of the disturbances with integer order filters and with fractional order filters. The results from the comparative analysis of their frequency characteristics are given below.


Sign in / Sign up

Export Citation Format

Share Document