White spruce (Picea glauca) restoration in temperate mixedwood stands using patch cuts and enrichment planting

2013 ◽  
Vol 89 (03) ◽  
pp. 392-400 ◽  
Author(s):  
François Hébert ◽  
Vincent Roy ◽  
Isabelle Auger ◽  
Martin-Michel Gauthier

The use of gap-based silviculture and enrichment planting was tested in temperate mixedwood forests in eastern Canada. Four different sizes of canopy opening or patch cuts were applied to six stands in the maple–birch domain of Quebec. We evaluated the influence of opening size, cardinal quadrant within the opening, and distance from the forest edge of openings on white spruce height and ground-level diameter (GLD) five years after enrichment planting. At ≥5 m from the edge, initial canopy transmittance was generally >60% in all four canopy treatments. White spruce seedling height and GLD were lower within 10 m from the edge, and generally increased where understory light levels were higher. Seedling survival, height, and GLD in the smallest opening (0.05 ha) were comparable or higher than those found in relatively larger openings. The 0.05-ha opening that more closely emulates natural canopy gaps of temperate mixedwood forests provided satisfactory seedling development, and is therefore compatible with a gap-based stand dynamics approach to management of mixedwood stands in Quebec.

2006 ◽  
Vol 36 (6) ◽  
pp. 1597-1609 ◽  
Author(s):  
Vernon S Peters ◽  
S Ellen Macdonald ◽  
Mark RT Dale

The timing of white spruce regeneration in aspen (Populus tremuloides Michx.) – white spruce (Picea glauca (Moench) Voss) boreal mixedwood stands is an important factor in stand development. We examined boreal mixedwood stands representing a 59-year period of time since fire and determined (1) whether and when a delayed regeneration period of white spruce occurred, (2) whether the relative abundance of initial (<20 years) versus delayed (≥20 years postfire) regeneration is related to seed availability at the time of the fire, and (3) what are the important regeneration substrates for initial versus delayed regeneration. Initial regeneration occurred primarily on mineral soil or humus, while delayed regeneration established primarily on logs and peaked 38–44 years after fire. Of the 20 stands investigated, seven were dominated by initial regeneration, six were dominated by delayed regeneration, and seven were even mixtures of both. The dominance of a site by initial or delayed regeneration could not be simply explained by burn timing relative to mast years or distance to seed source; our results suggested that fire severity and the competitive influence of initial regeneration on delayed regeneration were important at fine scales. Based on our results we describe several possible postfire successional pathways for boreal mixedwood forests.


1999 ◽  
Vol 75 (3) ◽  
pp. 505-513 ◽  
Author(s):  
Rongzhou Man ◽  
Victor J. Lieffers

In boreal mixedwood forests, aspen (Populus tremuloides) and white spruce (Picea glauca) commonly grow in mixture. These species may avoid competition through differential shade tolerance, physical separation of canopies, phenological differences, successional separation, and differences in soil resource utilization. Aspen may also be able to positively affect the growth of white spruce by improving litter decomposition and nutrient cycling rates, controlling grass and shrub competition, ameliorating environmental extremes, and reducing pest attack. These positive relationships likely make mixed-species stands more productive than pure stands of the same species. The evidence regarding the productivity of pure versus mixed aspen/white spruce stands in natural unmanaged forests is examined in this paper. Key words: Tree mixture; productivity; boreal mixedwoods; aspen; white spruce


2011 ◽  
Vol 41 (4) ◽  
pp. 793-809 ◽  
Author(s):  
Andrew Youngblood ◽  
Elizabeth Cole ◽  
Michael Newton

To identify suitable methods for reforestation, we evaluated the interacting effects of past disturbance, stock types, and site preparation treatments on white spruce (Picea glauca (Moench) Voss) seedling survival and growth across a range of sites in Alaska. Replicated experiments were established in five regions. At each site, two complete installations differed in time since disturbance: “new” units were harvested immediately before spring planting and “old” units were harvested at least 3 years before planting. We compared mechanical scarification before planting, broadcast herbicide application during the fall before planting, and no site preparation with 1-year-old container-grown seedlings from two sources, 2-year-old bare-root transplants from two sources, and 3-year-old bare-root transplants. Seedlings were followed for 11 years on most sites. Based on meta-analyses, seedling survival increased 10% with herbicide application and 15% with mechanical scarification compared with no site preparation. Scarification and herbicide application increased seedling height by about 28% and 35%, respectively, and increased seedling volume by about 86% and 195%, respectively, compared with no site preparation. Soil temperature did not differ among site preparation methods after the first 7 years. Results suggest that white spruce stands may be successfully restored through a combination of vegetation control and use of quality planting stock.


2012 ◽  
Vol 42 (8) ◽  
pp. 1446-1455 ◽  
Author(s):  
Emilie Robert ◽  
Suzanne Brais ◽  
Brian D. Harvey ◽  
David Greene

In the boreal forest, establishment of tree regeneration is tightly linked to both mast years and the availability of adequate germination beds for seedlings. We took advantage of a mast year (2006) in the eastern boreal mixedwood to compare seedling establishment in 2007 and seedling survival 2 and 4 years later on sections of fallen logs and equivalent areas of adjacent forest floor. Several factors that could explain establishment of seedlings on logs were measured, including wood resistance, density, moisture content, and C/N ratio. Our results show that small-seeded species, such as white birch ( Betula papyrifera Marsh.) and white spruce ( Picea glauca (Moench) Voss), establish preferentially on logs whereas balsam fir ( Abies balsamea (L.) Mill.), a relatively large-seeded species, establishes more often on the forest floor. Using logistic regressions, we confirmed that the probability of seedling establishment on logs declines with wood resistance, while the survival probability is inversely proportional to stand deciduous basal area. Survival rate was similar for seedlings established on the forest floor and on logs. However, none of the white birch seedlings established on the forest floor in 2007 were alive by 2011. Even following an exceptional mast year, log occurrence in eastern mixedwood stands would not suffice to obtain adequate white spruce stocking levels.


1981 ◽  
Vol 57 (6) ◽  
pp. 273-275 ◽  
Author(s):  
J. R. Blais

The history of spruce bubworm (Choristoneura fumiferana (Clem.)) outbreaks for the past two hundred years in the Ottawa River Valley in Quebec was retraced through radial-growth studies on old white spruce (Picea glauca (Moench)) and black spruce (Picea mariana (Mill.) B.S.P.) trees. The radial-growth profiles clearly indicate three suppression periods resulting from outbreaks that occurred in the twentieth century, each starting about 1910, 1940 and 1967. There is no evidence of an outbreak during the nineteenth century in this region. However, a reduction in radial-growth starting in 1783 observed on the only three specimens of white spruce over 200 years old, has the characteristics of that caused by a budworm outbreak. An interval of 127 years between this and the 1910 outbreak is similar to other long intervals between outbreaks recorded prior to the twentieth century for some other regions in eastern Canada.


2009 ◽  
Vol 85 (4) ◽  
pp. 631-638 ◽  
Author(s):  
Alison D Lennie ◽  
Simon M Landhäusser ◽  
Victor J Lieffers ◽  
Derek Sidders

Trembling aspen regeneration was studied in 2 types of partial harvest systems designed to harvest mature aspen but protect immature spruce and encourage natural aspen regeneration. Two partial harvest systems, where the residual aspen was either left in strips or was dispersed uniformly, were compared to traditional clearcuts. After the first and second year since harvest, aspen sucker density and growth was similar between the 2 partial harvests, but was much lower than in the clearcuts. However, in the partial cuts the regeneration density was very much dependent on the location relative to residual trees. The density of regeneration was inversely related to the basal area of residual aspen; however, sucker height was inversely related to the basal area of the residual spruce. Although there were adequate numbers of suckers after partial harvest, their viability and contribution to the long-term productivity of these mixedwood stands is not clear. Key words: silvicultural systems, forest management, residual canopy, white spruce, Populus tremuloides, Picea glauca, traffic


2020 ◽  
Vol 96 (01) ◽  
pp. 27-35
Author(s):  
Myriam Delmaire ◽  
Nelson Thiffault ◽  
Evelyne Thiffault ◽  
Julie Bouliane

Ecosystem-based management aims to maintain the natural proportion of native species over a given landscape. White spruce (Picea glauca (Moench) Voss) is a species sensitive to environmental conditions; it is especially demanding in terms of nutrients and its regeneration is negatively affected by clearcut harvesting. Its proportion is now significantly lower than what it was in the preindustrial forests of Québec (Canada). As a native species in boreal Québec, efforts to maintain its proportion in the landscape are undertaken for white spruce, but little is known about the best practices to maximize establishment success of seedlings planted in the balsam fir (Abies balsamea)–white birch (Betula papyrifera) bioclimatic domain. Our general objective was to identify planting practices as related to microsite treatment that favour white spruce sapling survival and size after 11 growing seasons following enrichment planting of sites harvested by mechanized careful logging in an ecosystem-based management context. We also aimed at comparing white spruce performance with that of black spruce (Picea mariana (Mill.) BSP), a native species that is less sensitive to abiotic stress. Finally, we wanted to assess stand composition at this juvenile stage, as a function of microsite treatment and planted species. Localized site preparation did not significantly affect growth or survival for white spruce compared to control conditions. Furthermore, localized site preparation did not increase the proportion of white and black spruce, as evaluated by basal area. Our results suggest that white spruce can be successfully established in enrichment planting in fir-dominated boreal forests, without site preparation.


2019 ◽  
Vol 8 (23) ◽  
Author(s):  
Diana Lin ◽  
Lauren Coombe ◽  
Shaun D. Jackman ◽  
Kristina K. Gagalova ◽  
René L. Warren ◽  
...  

Here, we present the complete chloroplast genome sequence of white spruce (Picea glauca, genotype WS77111), a coniferous tree widespread in the boreal forests of North America. This sequence contributes to genomic and phylogenetic analyses of the Picea genus that are part of ongoing research to understand their adaptation to environmental stress.


1993 ◽  
Vol 69 (5) ◽  
pp. 554-560 ◽  
Author(s):  
J. E Wood ◽  
F. W. von Althen

Five-year results of a field experiment to evaluate the effects of vegetation control either before or after planting on the performance of planted white spruce (Piceaglauca [Moench] Voss) and black spruce (P. mariana [Mill.] B.S.P.) transplants and black spruce containerized seedlings are reported. Annual vegetation control with and without chemical site preparation significantly (P < 0.05) improved height growth, ground-level stem diameter, and health of the planted seedlings. Survival and seedling growth were significantly (P < 0.05) higher with chemical site preparation than with chemical release in August of the year after planting. From the beginning of June to the first half of August, soil temperatures were higher in the plots with no competing vegetation than in the control plots. The difference in temperature reached a maximum of 5 °C at 5 cm of depth and 4 °C at 12 cm of depth. Key words: black spruce, chemical site preparation, glyphosate, growth response, Picea glauca, Picea mariana, release, tending, vegetation management, weed control, white spruce


Sign in / Sign up

Export Citation Format

Share Document