Operational and economic feasibility of logging within forested riparian zones

2010 ◽  
Vol 86 (5) ◽  
pp. 601-607 ◽  
Author(s):  
Stephen B. Holmes ◽  
David P. Kreutzweiser ◽  
Peter S. Hamilton

The placement of riparian setbacks around water bodies has been shown to reduce logging impacts on aquatic and riparian communities and processes. However, the systematic application of no-harvest riparian setbacks can result in unnatural, linear patterns of older-growth forest across the landscape, a pattern that is inconsistent with the goal of emulating natural disturbances. Partial harvesting within riparian zones could provide a partial solution to this problem. As part of a larger project to evaluate the environmental consequences of partial harvesting within stream riparian zones of boreal mixedwood forests, we measured wood volumes removed from riparian zones and compared feller buncher productivity between partially harvested riparian zones and adjacent clearcut uplands. On average, from 20% to 33% of the total basal area (27% to 39% of the spruce/pine/fir basal area) was removed from the riparian zones. The riparian harvest resulted in considerable heterogeneity in residual stand structure, however, with basal areas within 50-m segments along the streams ranging from just over 50% to >95% remaining. Our results suggest that, even though the absolute effort required to harvest trees was greater in riparian zones, the larger average size of the trees more than compensated, so that the wood volume removed per unit effort was higher in riparian zones than in clearcuts. Key words: machine productivity, partial harvest, residual stand structure, riparian zone

2019 ◽  
Vol 49 (11) ◽  
pp. 1425-1433 ◽  
Author(s):  
John-Pascal Berrill ◽  
Robert Howe

Chemical control of unwanted trees can be a cost-efficient tool for forest management and restoration. In California, United States, the response of merchantable conifers to hardwood control is poorly understood. We studied the tree growth of coast redwood (Sequoia sempervirens (Lamb. ex D. Don) Endl.) following herbicide frill treatment of competing tanoak (Notholithocarpus densiflorus (Hook. & Arn.) Manos, C.H. Cannon, & S. Oh), coinciding with a partial harvest of conifers. The radial growth of 420 redwoods in 45 plots was measured using increment cores. With or without partial harvesting, herbicide treatment of tanoak enhanced growth of most redwoods: 23% of redwoods in herbicide-only plots and 34% of redwoods in herbicide + harvest plots had ≥100% higher posttreatment basal area increment (BAI). In untreated plots, 67% of redwoods displayed declining BAI. The response of redwoods (the ratio of 8-year postharvest BAI to 8-year preharvest BAI) was 59% higher in herbicide-only plots and 108% higher in herbicide + harvest plots compared with untreated control plots over the same period. Redwoods with long crowns maintained rapid growth with or without treatment. Trees growing slowly before treatment exhibited the greatest response, provided that they had relatively long crowns and were not left in suppressed crown positions. Forest managers implementing partial harvesting and (or) chemical control of hardwoods can expect to maintain or promote rapid growth of most residual redwoods.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 843
Author(s):  
Ella R. Gray ◽  
Matthew B. Russell ◽  
Marcella A. Windmuller-Campione

Insects, fungi, and diseases play an important role in forest stand development and subsequently, forest management decisions and treatments. As these disturbance agents commonly occur within and across landscapes, modeling has often been used to inform forest planning and management decisions. However, models are rarely benchmarked, leaving questions about their utility. Here, we assessed the predictive performance of a Bayesian hierarchical model through on–the-ground sampling to explore what features of stand structure or composition may be important factors related to eastern spruce dwarf mistletoe (Arceuthobium pusillum Peck) presence in lowland black spruce (Picea mariana (Mill.) B. S. P.). Twenty-five state-owned stands included in the predictive model were sampled during the 2019 and 2020 growing seasons. Within each stand, data related to the presence of eastern spruce dwarf mistletoe, stand structure, and species composition were collected. The model accurately predicted eastern spruce dwarf mistletoe occurrence for 13 of the 25 stands. The amount of living and dead black spruce basal area differed significantly based on model prediction and observed infestation, but trees per hectare, total living basal area, diameter at breast height, stand age, and species richness were not significantly different. Our results highlight the benefits of model benchmarking to improve model interpretation as well as to inform our understanding of forest health problems across diverse stand conditions.


2021 ◽  
Author(s):  
Leszek Bartkowicz ◽  

The aim of the study was to compare a patch-mosaic pattern in the old-growth forest stands developed in various climate and soil conditions occurring in different regions of Poland. Based on the assumption, that the patch-mosaic pattern in the forest reflect the dynamic processes taking place in it, and that each type of forest ecosystem is characterized by a specific regime of natural disturbances, the following hypotheses were formulated: (i) the patches with a complex structure in stands composed of latesuccessional, shade-tolerant tree species are more common than those composed of early-successional, light-demanding ones, (ii) the patch-mosaic pattern is more heterogeneous in optimal forest site conditions than in extreme ones, (iii) in similar site conditions differentiation of the stand structure in distinguished patches is determined by the successional status of the tree species forming a given patch, (iv) the successional trends leading to changes of species composition foster diversification of the patch structure, (v) differentiation of the stand structure is negatively related to their local basal area, especially in patches with a high level of its accumulation. Among the best-preserved old-growth forest remaining under strict protection in the Polish national parks, nineteen research plots of around 10 ha each were selected. In each plot, a grid (50 × 50 m) of circular sample subplots (with radius 12,62 m) was established. In the sample subplots, species and diameter at breast height of living trees (dbh ≥ 7 cm) were determined. Subsequently, for each sample subplot, several numerical indices were calculated: local basal area (G), dbh structure differentiation index (STR), climax index (CL) and successional index (MS). Statistical tests of Kruskal- Wallis, Levene and Generalized Additive Models (GAM) were used to verify the hypotheses. All examined forests were characterized by a large diversity of stand structure. A particularly high frequency of highly differentiated patches (STR > 0,6) was recorded in the alder swamp forest. The patch mosaic in the examined plots was different – apart from the stands with a strongly pronounced mosaic character (especially subalpine spruce forests), there were also stands with high spatial homogeneity (mainly fir forests). The stand structure in the distinguished patches was generally poorly related to the other studied features. Consequently, all hypotheses were rejected. These results indicate a very complex, mixed pattern of forest natural dynamics regardless of site conditions. In beech forests and lowland multi-species deciduous forests, small-scale disturbances of the gap dynamics type dominate, which are overlapped with less frequent medium-scale disturbances. In more difficult site conditions, large-scale catastrophic disturbances, which occasionally appear in communities formed under the influence of gap dynamics (mainly spruce forests) or cohort dynamics (mainly pine forests), gain importance.


2016 ◽  
Vol 11 (2) ◽  
pp. 466-476
Author(s):  
Bijendra Lal ◽  
L.S. Lodhiyal

Present study deals with stand structure, biomass, productivity and carbon sequestration in oak dominated forests mixed with other broad leaved tree species. The sites of studied forests were located in Nainital region between 29058’ N lat. and 79028’ E long at 1500-2150 m elevation. Tree density of forests ranged from 980-1100 ind.ha-1. Of this, oak trees shared 69-97%. The basal area of trees was 31.81 to 63.93 m2 ha-1. R. arboreum and Q. floribunda shared maximum basal area 16.45 and 16.32 m2 ha-1, respectively in forest site-1 and 2 while Quercus leucotrichophora shared maximum (35.69 m2 ha-1) in site-3. The biomass and primary productivity of tree species ranged from 481-569 t ha-1 and 16.9-20.9 t ha-1yr-1, respectively. Of this, biomass and primary productivity of oak tree species accounted for 81 to 95 and 78 to 98%, respectively. Carbon stock and carbon sequestration ranged from 228 to 270 t ha-1 and 8.0 to 9.9 t ha-1yr-1, respectively. The share of oak tree species ranged from 81 to 94.7 and 79 to 97%, respectively. The diversity of tree species ranged from 0.03 to 0.16 in forest sites-1, 2 and 3. The diversity of oak species was 0.08-0.16 in all the forest sites. Thus it is concluded that among the oak tree species, Quercus floribunda and Quercus leucotrichophora were highly dominated in the studied forests. The climax form of oak dominated trees in the studied forest sites depicted slightly lower richness and diversity of tree species compared to the forests in the region and elsewhere. As far as dry matter and carbon of forests is concerned, these estimates are close to the earlier reports of forests in the region. Therefore, studied forests have the potential to increase the diversity, productivity and carbon sequestration of forest tree species by providing the adequate scientific conservation and management inputs.


2020 ◽  
Author(s):  
Roberta Denise Alkmin Lopes Lima ◽  
Rogerio Serafim Parra ◽  
Marley Ribeiro Feitosa ◽  
Omar Féres ◽  
José Joaquim Ribeiro Rocha

Abstract Purpose Many transanal endoscopic surgeries require a high level of technical expertise and surgeon experience. Considering the economic feasibility of material acquisition and the technical feasibility of training and experience with complex methods, a simpler technique with available resources is relevant for the excision of rectal adenomas. This study presents the surgical and postoperative results achieved with a novel proctoscope using the transanal endoscopic technique to excise rectal adenomas. The results are compared to the results obtained with other currently employed transanal techniques. Methods We retrospectively investigated the medical records of patients who underwent transanal endoscopic operations from April 2000 to June 2018 at two tertiary referral centers for colorectal cancer. Results This study included 99 patients. The mean age was 65.3 ± 13.3 years. The average size of the adenomas was 4.6 ± 2.3 cm, and their average distance to the anal border was 5.6 ± 3.3 cm. The average operative time was 65.3 ± 41.7 min. In 48.5% of the operations, the specimen was fragmented, and in 59.6% of the cases, the microscopic margins were free. The rates of postoperative complications and relapse were 5% and 19%, respectively. The mean follow-up was 80 ± 61.5 months. Conclusions The described proctoscope proved to be a viable technique with results similar to other techniques, with the advantage that it allowed greater accessibility for surgeons. Therefore, its use could be implemented and become widespread in surgical practice.


2021 ◽  
Author(s):  
Mathias Neumann ◽  
Hubert Hasenauer

Abstract Competition for resources (light, water, nutrients, etc.) limits the size and abundance of alive trees a site can support. This carrying capacity determines the potential carbon sequestration in alive trees as well as the maximum growing stock. Lower stocking through thinning can change growth and mortality. We were interested in the relations between stand structure, increment and mortality using a long-unmanaged oak-hornbeam forest near Vienna, Austria, as case study. We expected lower increment for heavy thinned compared to unmanaged stands. We tested the thinning response using three permanent growth plots, whereas two were thinned (50% and 70% basal area removed) and one remained unmanaged. We calculated stand structure (basal area, stem density, diameter distribution) and increment and mortality of single trees. The heavy thinned stand had over ten years similar increment as the moderate thinned and unthinned stands. Basal area of the unthinned stand remained constant and stem density decreased due to competition-related mortality. The studied oak-hornbeam stands responded well even to late and heavy thinning suggesting a broad “plateau” of stocking and increment for these forest types. Lower stem density for thinned stands lead to much larger tree increment of single trees, compared to the unthinned reference. The findings of this study need verification for other soil and climatic conditions.


2020 ◽  
Vol 139 (6) ◽  
pp. 989-998
Author(s):  
Sauli Valkonen ◽  
Lucie Aulus Giacosa ◽  
Juha Heikkinen

Abstract This study focused on tree mortality in spruce-dominated stands managed using the single-tree selection method in southern Finland. Together with regeneration and tree growth, mortality is one of the basic elements of the stand structure and dynamics in selection stands. The study was based on data acquired from a set of 20 permanent experimental plots monitored with repeated measurements for 20 years. The average mortality in the number of stems (N) was 4.45 trees ha−1a−1, in basal area (G) 0.07 m2 ha−1a−1, and in stemwood volume (V) 0.56 m3 ha−1a−1. In relative terms it was 0.50% of N, 0.30% of G and 0.27% of V, respectively. Wind and snow were the most common causes of mortality, while deaths by biotic causes (mammals, insects, pathogens) were extremely rare. Some 6–10% of the total loss in the number of stems and volume was attributable to the loss or removal of trees that sustained serious damage in harvesting. Most of the mortality occurred in the smallest diameter classes of up to 20 cm. Such a high mortality among small trees can have an adverse influence on the sustainability of selection structures if not successfully checked in harvesting and management.


2011 ◽  
Vol 28 (2) ◽  
pp. 92-96 ◽  
Author(s):  
Aaron R. Weiskittel ◽  
Laura S. Kenefic ◽  
Rongxia Li ◽  
John Brissette

Abstract The effects of four precommercial thinning (PCT) treatments on an even-aged northern conifer stand in Maine were investigated by examining stand structure and composition 32 years after treatment. Replicated treatments applied in 1976 included: (1) control (no PCT), (2) row thinning (rowthin; 5-ft-wide row removal with 3-ft-wide residual strips), (3) row thinning with crop tree release (rowthin+CTR; 5-ft-wide row removal with crop tree release at 8-ft intervals in 3-ft-wide residual strips), and (4) crop tree release (CTR; release of selected crop trees at 8×8-ft intervals). PCT plots had more large trees and fewer small trees than the control in 2008. There were no other significant differences between the rowthin and control. The rowthin+CTR and CTR treatments had lower total and hardwood basal area (BA) and higher merchantable conifer BA than the control. CTR also resulted in more red spruce (Picea rubens [Sarg.]) and less balsam fir (Abies balsamea [L.]) than the other treatments. Although stand structures for rowthin+CTR and CTR were similar, the percentage of spruce in CTR was greater. Although the less-intensive rowthin+CTR treatment may provide many of the same benefits as CTR, the latter would be the preferred treatment if increasing the spruce component of a stand is an objective. Overall, early thinning treatments were found to have long-term effects on key stand attributes, even more than 30 years after treatment in areas with mixed species composition and moderate site potential.


1989 ◽  
Vol 13 (2) ◽  
pp. 76-80 ◽  
Author(s):  
Robert L. Bailey ◽  
Thomas M. Burgan ◽  
Eric J. Jokela

Abstract Data from 263 plots in a regional fertilization study of midrotation-aged slash pine plantations were used to fit prediction equations for basal area, trees per acre, stand average dominant height, diameter distributions, and individual tree heights. The equations include N and P fertilizationrates and CRIFF soil groups as predictor variables. The survival model also accounts for the accelerating effect of fusiform rust on mortality rate. Using published tree volume equations, the prediction of volumes by dbh class for fertilized slash pine plantations is now possible. This integratedsystem of equations is available as a user-friendly computer program that can calculate expected yields by diameter class and aid the forester in evaluating investment opportunities that include forest fertilization. South. J. Appl. For. 13(2):76-80.


Sign in / Sign up

Export Citation Format

Share Document