The Importance of Efflux Systems in Antibiotic Resistance and Efflux Pump Inhibitors in the Management of Resistance

2015 ◽  
Vol 49 (2) ◽  
pp. 278-291 ◽  
Author(s):  
Abdurrahman AYGÜL
Author(s):  
Morgane Choquet ◽  
Elodie Lohou ◽  
Etienne Pair ◽  
Pascal Sonnet ◽  
Catherine Mullie

Overexpression of efflux pumps extruding antibiotics currently used for the treatment of Acinetobacter baumannii infections has been described as an important mechanism causing antibiotic resistance. The first aim of this work was to phenotypically evaluate the overexpression of efflux pumps on a collection of 124 ciprofloxacin resistant A. baumannii strains. An overexpression of genes encoding one or more efflux pumps was obtained for 19 out of the 34 strains with a positive phenotypic efflux (56%). The most frequent genes overexpressed were those belonging to the RND family, with adeJ being the most prevalent (50%). Interestingly, efflux pump genes coding for MATE and MFS families were also overexpressed quite frequently: abeM (32%) and abaQ (26%). The second aim was to synthesize 1-(1-NaphthylMethyl)-Piperazine analogs as potential new efflux pump inhibitors and biologically evaluate them against strains with a positive phenotypic efflux. Quinoline and pyridine analogs were found to be more effective than their parent compound 1-(1-NaphthylMethyl)-Piperazine. Stereochemistry also played an important part in the inhibitory activity as quinoline derivative ( R )-3a was identified as being the most effective and less cytotoxic. Its inhibitory activity was also correlated to the number of efflux pumps expressed by a strain. The results obtained in this work suggest that quinoline analogs of 1-(1-NaphthylMethyl)-Piperazine are promising leads in the development of new anti- Acinetobacter baumannii therapeutic alternatives, in combination with antibiotics for which an efflux-mediated resistance is suspected.


2019 ◽  
Vol 25 (42) ◽  
pp. 6030-6069 ◽  
Author(s):  
Fernando Durães ◽  
Madalena Pinto ◽  
Emília Sousa

Antibiotic resistance is one of the most pressing health issues of our days. It can arise due to a multiplicity of factors, such as target modification, decrease in the drug uptake, changes in the metabolic pathways and activation of efflux pumps. The overexpression of efflux pumps is responsible for the extrusion of drugs, making antibiotic therapy fail, as the quantity of intracellular antibiotic is not enough to provide the desired therapeutic effect. Efflux pumps can be included in five families according to their composition, nature of substrates, energy source, and number of transmembrane spanning regions. The ABC superfamily is mainly found in Gram-positive bacteria, use ATP as an energy source, and only a limited number of ABC pumps confer multidrug resistance (MDR). On the other hand, the MFS family, most present in Gram-positive bacteria, and the RND family, characteristic of Gram-negative bacteria, are most associated with antibiotic resistance. A wide variety of inhibitors have been disclosed for both families, from either natural or synthetic sources, or even drugs that are currently in therapy for other diseases. The other two families are the SMR, which are the smallest drug efflux proteins known, and the MATE family, whose pumps can also resort to the sodium gradient as an energy source. In this review, it is intended to present a comprehensive review of the classes of efflux pump inhibitors from the various sources, highlighting their structure-activity relationships, which can be useful for medicinal chemists in the pursuit of novel efflux pump inhibitors.


2021 ◽  
Vol 18 (4) ◽  
pp. 315-325
Author(s):  
Chirag Patel ◽  
Sanjeev Acharya ◽  
Priyanka Patel

Antibiotic resistance is one of the most prevalent, complex and serious global health issues, and needs to be monitored and controlled with medicine. Many approaches have been used to reduce the emergence and impact of resistance to antibiotics. The antimicrobial adjuvant approach is considered as novel, more effective and less expensive. The said approach not only suppresses the emergence of resistance but also conserves the activity of existing antibiotics by offering a promising strategy that is also complementary to the discovery of new antibiotics. This review contains an outline of the basic types of antibiotic adjuvant, their structure, the basis of their operation, their substrate antibiotics and the challenges in this field, as well as the role of potential compounds, namely β-lactamase inhibitors, efflux pump inhibitors and permeability enhancers in antibiotic resistance and their possible solutions.


Author(s):  
Akif Reza ◽  
J. Mark Sutton ◽  
Khondaker Miraz Rahman

Antibiotic resistance represents a significant threat to the modern healthcare provision. The ESKAPEE pathogens, in particular, have proven to be especially challenging to treat, due to their intrinsic and acquired ability to rapidly develop resistance mechanisms in response to environmental threats. The development of biofilm has been characterised as an essential contributing factor towards antimicrobial-resistance and tolerance. Several studies have implicated the involvement of efflux pumps in antibiotic resistance, both directly, via drug extrusion and indirectly, through the formation of biofilm. As a result, the underlying mechanism of these pumps has attracted considerable interest due to the potential of targeting these protein structures and developing novel adjunct therapies. Subsequent investigations have revealed the ability of efflux pump-inhibitors (EPIs) to block drug-extrusion and disrupt biofilm formation, thereby, potentiating antibiotics and reversing resistance of pathogen towards them. This review will discuss the potential of EPIs as a possible solution to antimicrobial resistance, examining different challenges to the design of these compounds, with an emphasis on Gram-negative ESKAPEE pathogens.


Antibiotics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 229 ◽  
Author(s):  
Akif Reza ◽  
J. Mark Sutton ◽  
Khondaker Miraz Rahman

Antibiotic resistance represents a significant threat to the modern healthcare provision. The ESKAPEE pathogens (Enterococcus faecium., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Escherichia coli), in particular, have proven to be especially challenging to treat, due to their intrinsic and acquired ability to rapidly develop resistance mechanisms in response to environmental threats. The development of biofilm has been characterised as an essential contributing factor towards antimicrobial-resistance and tolerance. Several studies have implicated the involvement of efflux pumps in antibiotic resistance, both directly, via drug extrusion and indirectly, through the formation of biofilm. As a result, the underlying mechanism of these pumps has attracted considerable interest due to the potential of targeting these protein structures and developing novel adjunct therapies. Subsequent investigations have revealed the ability of efflux pump-inhibitors (EPIs) to block drug-extrusion and disrupt biofilm formation, thereby, potentiating antibiotics and reversing resistance of pathogen towards them. This review will discuss the potential of EPIs as a possible solution to antimicrobial resistance, examining different challenges to the design of these compounds, with an emphasis on Gram-negative ESKAPEE pathogens.


2016 ◽  
Vol 19 (9) ◽  
pp. 705-713 ◽  
Author(s):  
Debarati Choudhury ◽  
Anupam Talukdar ◽  
Pankaj Chetia ◽  
Amitabha Bhattacharjee ◽  
Manabendra Choudhury

2015 ◽  
Vol 11 (2) ◽  
pp. 135-155 ◽  
Author(s):  
Khac-Minh Thai ◽  
Trieu-Du Ngo ◽  
Thien-Vy Phan ◽  
Thanh-Dao Tran ◽  
Ngoc-Vinh Nguyen ◽  
...  

ChemMedChem ◽  
2021 ◽  
Author(s):  
Nicholas Cedraro ◽  
Rolando Cannalire ◽  
Andrea Astolfi ◽  
Gianmarco Mangiaterra ◽  
Tommaso Felicetti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document