scholarly journals Studies on the reaction in tissue culture of tomato genotypes under biotic stress

2014 ◽  
Vol 70 (1) ◽  
pp. 5-10 ◽  
Author(s):  
Ewa Hanus-Fajerska

Plant regeneration in vitro from virus-infected somatic tomato (<em>Lycopersicon</em> sp.) tissue was performed. Regeneration experiments were started after the determination of virus presence, using enzyme-linked immunosorbent assay, in leaves used as a source of explants. Leaf explants infected with selected strains of tomato mosaic <em>Tobamovirus</em> or cucumber mosaic <em>Cucumovirus</em> respectively, were cultured on a standarised MS agar medium to induce adventitious shoots, which were afterwards excised, rooted in vitro and cultured to plants. Explants were also screened for their ability to produce callus. Diverse effects of viral infection, ranging from stimulation to inhibition of callus formation and of morphogenesis rate, were observed. The health condition of the tissue proved to affect regeneration potential of <em>Lycopersicon esculentum</em>, whereas wild accesions did not react in that case so distinctly. In cultivated tomato was encountered the decline in competence to reproduce shoots adventitiously in infected tissue. There was also relationship between donor plant health condition and adventitious root formation in regenerated shoots. Experiments with short-term cultures of <em>L. esculenum</em> reveled also that a certain number of shoots regenerated from diseased tissue can be virus-free.

HortScience ◽  
2011 ◽  
Vol 46 (3) ◽  
pp. 466-469
Author(s):  
Jin Cui ◽  
Juanxu Liu ◽  
Jianjun Chen ◽  
Richard J. Henny

Chlorophytum amaniense Engl. ‘Fire Flash’ is a popular exotic ornamental foliage plant as a result of its unique coral-colored midribs and petioles and tolerance to interior low light levels. Currently, demand for propagative materials exceeds the availability of seeds. This study was intended to develop an in vitro culture method for rapid propagation of this cultivar. Leaf and sprouted seed explants were cultured on a Murashige and Skoog basal medium supplemented with different cytokinins with 1.1 μM α-naphthalene acetic acid (NAA) or 2.3 μM 2,4-dichlorophenoxyacetic acid (2,4-D). Leaf explants showed poor responses in callus production and no adventitious shoots were obtained. Callus formation frequencies from sprouted seeds were 71% and 85% when induced by 9.8 μM N6-(2-isopentyl) adenine (2iP) with 1.1 μM NAA and 9.1 μM N-phenyl-N′-1,2,3-thiadiazol-5-ylurea (TDZ) with 1.1 μM NAA, respectively. Adventitious shoots occurred after the induced calluses were subcultured on the same concentrations of TDZ or 2iP with NAA. Shoot formation frequencies from calluses cultured on TDZ with NAA and 2iP with NAA were 92% and 85%, and the corresponding mean shoot numbers were 37 and 31 per piece of callus (1 cm3), respectively. Adventitious shoots rooted at 100% after transferring to the basal medium containing 4.4 μM 6-benzylaminopurine (BA) with 2.7 μM NAA. Plantlets, after transplanting to a soilless substrate were easily acclimatized in a shaded greenhouse under a photosynthetic photon flux (PPF) density of 200 μmol·m−2·s−1. Regenerated plants grew vigorously without undesirable basal branching or distorted leaves. This newly established regeneration method can provide the foliage plant industry with a means for rapidly propagating ‘Fire Flash’ liners in a year-round fashion.


2020 ◽  
Author(s):  
Rachael Barron

Artemisia tridentata (big sagebrush) is an ecologically important shrub found in western North America. In vitro techniques can be applied to big sagebrush for the purpose of studying gene function, genotypic and phenotypic plasticity studies, cloning, genotypic preservation, and restoration. I performed experiments to develop an indirect organogenesis protocol to regenerate whole Wyoming big sagebrush plants from leaf explants. Callus formation frequency was 88% (±4.0%) in leaf explants cultured on medium containing 0.5 mg/l BAP and 1.0 mg/l NAA. Shoot formation frequency was variable between replicates and was the highest when callus tissue was cultured on medium containing 1.5 mg/l BAP and 0.1 mg/l NAA, 37% to 80%. I tested several auxin treatments to induce root formation and concluded the best to be 0.5mg/l IBA, which yielded 42% to 60% rooting. Taking into account all these variables, I estimate the total regeneration efficiency to range between 14% to 43% on this set of treatments. This protocol was also applied to basin big sagebrush. Callus formation was 100% in leaf explants. Shoot formation was 34% (±14.6%), but shoots exhibited a hyperhydric phenotype and were not transferred to root induction medium. The in vitro regeneration protocol developed is a crucial element that would be required to transform big sagebrush using molecular approaches. Experiments were also conducted to determine the feasibility of shoot tip and nodal cuttings to develop adventitious roots in vitro. This method can provide genetically identical material much faster than in vitro regeneration. Adventitious root formation in Wyoming big sagebrush cuttings cultured on two media types was inconsistent, ranging from 10% in some experiments to 80% in others. Limited success was achieved in nodal cuttings cultured on modified MS medium containing auxin and cytokinin 12.5% (±5.6%). No root formation was achieved in mature plant tissue collected in the field. Results indicated that genotypic influences were likely more responsible for variations in rooting than the medium or vessel conditions tested. Cloning experiments in basin big sagebrush further supported this notion. All material for these experiments came from half-sibling individuals that was maintained separately throughout the course of the experiments. Some half-siblings formed no adventitious roots on any treatments tested whereas others had high rates of formation on all treatments. Further studies, utilizing exogenous PGRs, such as auxins, may provide more successful adventitious root formation in shoot tips from both big sagebrush subspecies.


Author(s):  
I. I. Konvalyuk ◽  
L. P. Mozhylevs’ka ◽  
V. A. Kunakh

Aim. The aim of the work was to determine the optimal conditions for induction and proliferation of tissue culture obtained from D. antarctica plants from various localities of the Maritime Antarctica. Methods. Tissue and organ culture techniques. Results. The media В5 supplemented with 2 mg/l 2,4-D + 0,1 mg/l BAP, В5 supplemented with 10 mg/l 2,4-D + 0,2 mg/l BAP and МС, supplemented with 5 mg/l 2,4-D + 0,1 mg/l Kin were optimal for callus induction from different types of explants. The media with a reduced concentrations of auxins and cytokinins were the most effective for maintenance of continuous tissue culture compared to the media for callus induction: B5 + 2 mg/l 2,4-D mg/l + 0,1 mg/l BAP and MC + 1 mg/l 2,4-D + 0.1 mg/l Kin. Tissues from shoot growth point and leaf explants of genotypes DAR12a and G/D12-2a on medium B5 with 2 mg/l 2,4-D + 0.1 mg/l BAP and B5 with 10 mg/l 2,4-D + 0,2 mg/l BAP demonstrated the ability to spontaneous organogenesis and formed separate shoots. Conclusions. Conditions have been determined for the induction and proliferation of tissue culture from leaf, root, and shoot growth point explants of D. antarctica. The frequency of callus formation depended on the mineral composition of medium, ratios and concentrations of growth regulators, type of explant, and genotype of a donor-plant. As a result of spontaneous organogenesis, regenerated plants were obtained, conditions for their rooting in vitro were elaborated. The proposed methods for induction and proliferation tissue culture of D. antarctica in vitro can be used to produce the plant material useful for a various investigations. Keywords: Deschampsia antarctica E. Desv., tissue culture, organogenesis in vitro, frequency of callogenesis.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1120G-1120
Author(s):  
J. L. Jacobs ◽  
C. T. Stephens

Several growth hormone combinations and silver nitrate concentrations were examined for their effect on regeneration of different pepper genotypes. Primary leaf explants from in vitro seedlings were cultured on a revised Murashige and Skoog medium supplemented with auxin, cytokinin and 1.6% glucose. Combinations of different concentrations of indole-3-acetic acid (IAA), 0-5 mg/l, and 6-benzylaminopurine (BAP), 0-5 mg/l, were tested to determine the most effective medium for shoot primordium formation. Experiments with IAA and BAP did not result in a specific growth hormone combination appropriate for regeneration of all genotypes tested. Of the silver nitrate concentrations tested, 10 mg/l resulted in the best shoot and leaf differentiation and reduced callus formation. Differences in organogenic response of individual genotypes were evaluated on a single regeneration medium. Whole plants were regenerated from 11 of 63 genotypes examined. Based on these experiments, a reproducible regeneration system for pepper was developed with a total of 500 plants regenerated to date.


2010 ◽  
Vol 17 (8) ◽  
pp. 1282-1290 ◽  
Author(s):  
Paolo Di Giovine ◽  
Antonella Pinto ◽  
Rose-Marie Ölander ◽  
Dorothea Sesardic ◽  
Paul Stickings ◽  
...  

ABSTRACT Accurate determination of diphtheria toxin antibodies is of value in determining the rates of immunity within broad populations or the immune status of individuals who may be at risk of infection, by assessing responses to vaccination and immunization schedule efficacy. Here we report the results of an external quality assessment (EQA) study for diphtheria serology, performed within the dedicated surveillance network DIPNET. Twelve national laboratories from 11 European countries participated by testing a standard panel of 150 sera using their current routine method: Vero cell neutralization test (NT), double-antigen enzyme-linked immunosorbent assay (ELISA; DAE), dual double-antigen time-resolved fluorescence immunoassay (dDA-DELFIA), passive hemagglutination assay (PHA), toxin binding inhibition assay (ToBI), and in-house or commercial ELISAs. The objective of the study was not to identify the best assay, as the advantages and drawbacks of methods used were known, but to verify if laboratories using their routine method would have categorized (as negative, equivocal, or positive) a serum sample in the same way. The performance of each laboratory was determined by comparing its results on a quantitative and qualitative basis to NT results from a single reference laboratory, as this test is considered the in vitro “gold standard.” The performance of laboratories using NT was generally very good, while the laboratories’ performance using other in vitro methods was variable. Laboratories using ELISA and PHA performed less well than those using DAE, dDA-DELFIA, or ToBI. EQA is important for both laboratories that use in vitro nonstandardized methods and those that use commercial ELISA kits.


2018 ◽  
Vol 9 (3) ◽  
pp. 475-480
Author(s):  
Paulo Tarso Barbosa Sampaio ◽  
Lyana Silva Jardim ◽  
Ariel Dotto Blind ◽  
Flavio Mauro Souza Bruno

Somatic embryogenesis from callus induced in epicotyl and hypocotyl segments can be viable native species in order to better -benefit ratio costs, and rates of clonal multiplication. In this sense, two trials were established to induce callus and adventitious buds on hypocotyl and epicotyl segments of cumaru bean seedlings germinated in vitro in different concentrations and combinations of growth regulators. At first, we used the MS medium supplementwith ANA (0.0, 1.5 mg.L-1) and TDZ (0.0, 4.0 and 8.0 mg.L-1) distributed in factorial 2 x 3 x 2 (x auxin cytokinin x explant) with eight replications. In the second, it was used the WPM medium supplemented with BAP (2.0 mg L-1) and plus 2,4-D (2.0 and 4.0 mg L-1) in a factorial 2 x 2 (auxin x explant) with 15 repetitions each. They were evaluating callus formation and the average number of adventitious shoots during the period of 90 days. The results indicated that the highest average for callus formation was observed when the explants were subjected to concentrations of 8.0 mg L-1 TDZ combined with 1.5 mg L-1 ANA in MS medium. For the formation of buds, the WPM medium plus 2.0 mg L-1 2,4-D in the second experiment, induced higher number of shoots, being significant the use of auxin, and its interaction with the type of explant.


2018 ◽  
Vol 47 (2) ◽  
pp. 538-543
Author(s):  
Rodrigo Kelson S. REZENDE ◽  
Ana Maria N. SCOTON ◽  
Maílson V. JESUS ◽  
Zeva V. PEREIRA ◽  
Fernanda PINTO

Baru (Dipteryx alata Vog.) is a species with great economic and environmental potential; it has popular acceptance, besides being a very productive species. Alternative propagation methods are important for species maintenance and exploration. Thus, micropropagation emerged as an alternative technique, providing genetic stability and the production of a large number of seedlings. The aim of the present investigation was to develop a callus induction protocol for in vitro baru explants. The tested explants were nodal, internodal and foliar segments. The explants were disinfected for 30 seconds in 70% alcohol (v/v) and 2 minutes in sodium hypochlorite (1.25% active chlorine). This was followed by triple washing. The inoculation was carried out in test tubes containing 15 mL MS medium (30 g L-1 sucrose, 6 g L-1 agar and 100 mg L-1 ascorbic acid) supplemented with 2.0 mg L-1 naphthalene acetic acid (NAA). The solution also contained 0.0, 2.5 or 5.0 mg L-1 of 6-benzylaminopurine (BAP) with the pH adjusted to 5.8. In the incubation phase, the explants were cultured for seven days in the dark and then subjected to a photoperiod of 16 hours (43 µmol m-2 s-1) at 25 ± 2 °C. The treatments were studied with 2.5, 5.0, 7.5 or 10.0 mg L-1 BAP additions to the MS. Callus formation, contamination and oxidation evaluations were undertaken. The results obtained when using 2.0 mg L-1 NAA concluded that such a treatment should be used to induce callogenesis from nodal explants, while for the tested baru leaf explants, the best results for callus formation were given by the combination of 2.0 mg L-1 NAA with 2.5 mg L-1 of BAP to.


2015 ◽  
Vol 49 (4) ◽  
pp. 199-204 ◽  
Author(s):  
S Mahmud ◽  
S Akter ◽  
IA Jahan ◽  
S Khan ◽  
A Khaleque ◽  
...  

A protocol was developed to produce large amount of callus in short a period of time from leaf explants of Stevia rebaudiana Bert. The highest amount of white callus was obtained on MS medium supplemented with 2.5 mg/l 2, 4-D and 0.5 mg/l BAP after 3 weeks of inoculating leaf segments. On the other hand, 0.5 mg/l BAP and 1.0 mg/l Kn exhibits poor performance towards callus formation while after using 1.0 mg/l Kn alone did not develop any callus. In this experiment, highest amount of green callus was obtained when MS medium supplemented with 2.5 mg/l NAA and 10% coconut water was used. An improved analytical method HPLC was applied to analyze stevioside extracted from the leaf and callus of Stevia rebaudiana. The stevioside in each sample were analyzed by comparing their retention times with those of the standards. The retention time (RT) of stevioside for leaves were found 14.96 and for callus 13.81 mins. The percentage of stevioside content from leaves and callus was 12.19% and 12.62% respectively DOI: http://dx.doi.org/10.3329/bjsir.v49i4.22621 Bangladesh J. Sci. Ind. Res. 49(4), 199-204, 2014


2019 ◽  
Vol 43 ◽  
Author(s):  
Olga Vladimirovna Mitrofanova ◽  
Irina Vjacheslavovna Mitrofanova ◽  
Tatyana Nikolaevna Kuzmina ◽  
Nina Pavlovna Lesnikova-Sedoshenko ◽  
Sergey Vladimirovich Dolgov

ABSTRACT Apricot is one of the most valuable commercial fruits. In vitro propagation of apricot is very important for rapid multiplication of cultivars with desirable traits and production of cleaning up and virus-free plants. Low frequency of multiplication is the main limiting factor for traditional propagation methods. In this regard, the objective of our investigation was to study the morphogenetic capacity of apricot leaf explants of the promising cultivars ‘Iskorka Tavridy’, ‘Magister’ and ‘Bergeron’ for regeneration system development and solving some breeding questions. The source of explants was in vitro plants regenerated and cultured on QL medium. Leaves were maintained in the dark at 24±1 °C in thermostat for three-four weeks. Morphogenic callus and structures were mainly formed at the central and proximal parts of leaves on MS, QL and WPM media with 1.5 or 2.0 mg L-1 BAP and 1.5 or 2.0 mg L-1 IAA in different combinations, or TDZ (0.6 and 1.3 mg L-1). Callus with adventive buds was transferred to regeneration medium and placed into a growth chamber at 24±1 °C and 16-hour photoperiod with a light intensity of 37.5 μmol m-2 s-1. The best results were obtained when adaxial leaf surface was in contact with the culture medium. Frequency of leaf callus formation on MS medium with 1.5 mg L-1 BAP and 1.5 mg L-1 IAA was higher in the explants of ‘Iskorka Tavridy’ (80.0%) than in - ‘Bergeron’ (50.0%) and ‘Magister’ (36.7%). The best results of callogenesis for ‘Magister’ was obtained on MS medium with 1.3 mg L-1 TDZ (53.3%). Active microshoot regeneration in ‘Iskorka Tavridy’ cultivar was shown on MS medium with BAP and IAA and in ‘Magister’ cultivar - on MS medium with TDZ. Rhizogenesis was obtained on half strength MS medium with 2.0 mg L-1 IBA.


Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 755
Author(s):  
Angela Ricci ◽  
Luca Capriotti ◽  
Bruno Mezzetti ◽  
Oriano Navacchi ◽  
Silvia Sabbadini

In the present study, an efficient system for the in vitro regeneration of adventitious shoots from the peach rootstock Hansen 536 leaves has been established. Twenty regeneration media containing McCown Woody Plant Medium (WPM) as a basal salt supplemented with different concentrations and combinations of plant growth regulators (PGRs) were tested. Expanded leaves along with their petiole from 3-week-old elongated in vitro shoot cultures were used as starting explants. The highest regeneration rate (up to 53%) was obtained on WPM basal medium enriched with 15.5 μM N6-benzylaminopurine (BAP). The influences on leaf regeneration of the ethylene inhibitor silver thiosulphate (STS) and of different combinations of antibiotics added to the optimized regeneration medium were also investigated. The use of 10 μM STS or carbenicillin (238 μM) combined with cefotaxime (210 μM) significantly increased the average number of regenerating shoots per leaf compared to the control. In vitro shoots were finally elongated, rooted and successfully acclimatized in the greenhouse. The results achieved in this study advances the knowledge on factors affecting leaf organogenesis in Prunus spp., and the regeneration protocol described looks promising for the optimization of new genetic transformation procedures in Hansen 536 and other peach rootstocks and cultivars.


Sign in / Sign up

Export Citation Format

Share Document