scholarly journals ACCURACY OF VERTICAL TRAJECTORY DETERMINATION OF HYDROGRAPHIC SURVEY UNIT USING ROBOTIZED TOTAL STATION

Author(s):  
Dariusz Popielarczyk
Author(s):  
Dariusz Popielarczyk

The paper presents analysis of determination of vertical movement of the surveying boat called “heave” with the use of Robotized Total Station (RTS) technique. The classical geodetic Total Station was used for sub-centimeter calculation of water level changes during hydroacoustic measurements on the fragment of Vistula river behind the dam and hydropower in Włocławek in Poland. The power station work causes up to 1.7 m movement of vertical reference water surface in aspect of local bathymetric survey. The experimental, hydrographic surveys on the river were conducted where the water level was changing significantly over time depending on the operational schedule of the power plant. Verified hydrographic data had to be brought to the common water level. To determine the final water level, data on the height of the Robotized Total Station prism positioned on the boat during sounding was considered. The RTS technique with 0.02–0.05 m vertical accuracy proved to be very useful and essential in engineering inland bathymetric measurements.


1881 ◽  
Vol 31 (206-211) ◽  
pp. 237-238

With the exception of a series of determinations made by the officers of the “Challenger” at Ponta Delgada, St. Michael, in 1873, no magnetic observations have, so far as I can learn, been made in the Azores since the time, of Captain Vidal’s hydrographic survey in 1843-4.


2016 ◽  
Vol 23 (4) ◽  
pp. 145-160 ◽  
Author(s):  
Jacek Sztubecki ◽  
Adam Bujarkiewicz ◽  
Małgorzata Sztubecka

Abstract The application of geodetic methods to examine structures consists in the determination of their displacements relative to an established geodetic reference datum or in the definition of the geometry of their individual components. Such examinations form a picture of changes happening between specific points in time. Modern measurement technologies used in geodetic engineering enable undertaking more and more challenging measurements with increasing accuracy. The purpose of this article is to present a measurement technique involving a Leica TDRA 6000 total station to measure displacements in engineering structures. The station features a direct drive technology to achieve an accuracy of 0.25 mm in 3-dimensional measurements. Supported by appropriate software, the unit makes a perfect instrument for the monitoring of civil engineering structures. The article presents the results of measurement of static and dynamic displacements in a few engineering structures. The measurements were carried out both in laboratory conditions and on actual, operated civil engineering structures.


2021 ◽  
Vol 13 (23) ◽  
pp. 4837
Author(s):  
Peng Yang ◽  
Yong Huang ◽  
Peijia Li ◽  
Siyu Liu ◽  
Quan Shan ◽  
...  

Chang’E-5 (CE-5) is China’s first lunar sample return mission. This paper focuses on the trajectory determination of the CE-5 lander and ascender during the landing and ascending phases, and the positioning of the CE-5 lander on the Moon. Based on the kinematic statistical orbit determination method using B-spline and polynomial functions, the descent and ascent trajectories of the lander and ascender are determined by using ground-based radiometric ranging, Doppler and interferometry data. The results show that a B-spline function is suitable for a trajectory with complex maneuvers. For a smooth trajectory, B-spline and polynomial functions can reach almost the same solutions. The positioning of the CE-5 lander on the Moon is also investigated here. Using the kinematic statistical positioning method, the landing site of the lander is 43.0590°N, 51.9208°W with an elevation of −2480.26 m, which is less than 200 m different from the LRO (Lunar Reconnaissance Orbiter) image data.


2021 ◽  
Vol 11 (19) ◽  
pp. 8936
Author(s):  
Boštjan Kovačič ◽  
Luka Štraus ◽  
Mateja Držečnik ◽  
Zoran Pučko

Determining the displacements and consequent deformations of structures is a demanding branch of engineering. Displacements are most often determined by geodetic methods, among which high-precision non-contact methods have recently taken the lead. Engineering geodesy is an indispensable part of construction projects. In the desire for efficient and fast measurements, the technology of terrestrial laser scanning (TLS) and the use of robotic total station (RTS) and other geodetic methods are becoming more and more useful for engineers. In the presented study, we focused on the measurement and comparison of vertical displacements with various mentioned equipment and the determination of the influence of meteorological conditions on the displacements of timber beams that we used to perform the experiment. Measurements were performed both in the laboratory and outdoors. A novelty in the work was the use of a TLS scanner to determine the evaluation of small value displacements and the analysis of the usability of geodetic measuring equipment. In the Materials and Methods section, we describe the equipment used and the characteristics of the beams. The Results section describes the experimental outcomes, which include the performance of experimental analysis of vertical displacements of timber beams under different meteorological conditions. Altogether, the results consist of geodetic measurements and the processing of measured data. The results of measurements of vertical displacements with a terrestrial laser scanner were compared with the results obtained with a robotic total station were evaluated and compared with the displacements calculated from static analysis and the results of other methods used.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6265
Author(s):  
Mladen Zrinjski ◽  
Antonio Tupek ◽  
Đuro Barković ◽  
Ante Polović

High industrial chimney inclination monitoring and analysis is crucial from a stability point of view because, if not maintained, it can pose a great potential hazard for its surroundings. Various modern approaches of chimneys’ geometrical parameters determination have been proposed and are actively in use. However, little research regarding the applicability of the unmanned aerial system (UAS)-based photogrammetric approach of chimney structural monitoring has been conducted and a comprehensive analysis with validated methods is lacking. Therefore, this research is focused on the determination of geometrical structural parameters of a masonry chimney whereby two independent methods have been applied. Reference values of the chimney geometrical parameters have been determined by precise total station (TS) measurements and, in relation to them, the applicability of the UAS-based photogrammetric approach is evaluated. Methodologically, the reference and validation values of the chimney geometrical parameters have been determined based on double modeling of the chimney structure. Firstly, cross-sectional elliptical regression has been applied to determine the geometrical values of the chimney at predefined above-ground levels (AGLs). Secondly, the spatial chimney axis has been derived by polynomial regression to determine the inclination of the full chimney structure. Lastly, the structural stability of the chimney is validated based on its axis inclination whereby permitted deviations are determined according to the European Standard EN 1996-1-1:2005. Experimental results of our research show that consistently better results are gained by TS-based surveys and, although the determination of the chimney’s geometrical values by the UAS-based approach is certainly possible, great attention must be given to the accuracy of the UAS-generated point cloud (PC) if high accuracy results are needed.


Author(s):  
M.-A. Mittet ◽  
T. Landes ◽  
P. Grussenmeyer

3D cameras are a new generation of sensors more and more used in geomatics. The main advantages of 3D cameras are their handiness, their price, and the ability to produce range images or point clouds in real-time. They are used in many areas and the use of this kind of sensors has grown especially as the Kinect (Microsoft) arrived on the market. This paper presents a new localization system based exclusively on the combination of several 3D cameras on a mobile platform. It is planed that the platform moves on sidewalks, acquires the environment and enables the determination of most appropriate routes for disabled persons. The paper will present the key features of our approach as well as promising solutions for the challenging task of localization based on 3D-cameras. We give examples of mobile trajectory estimated exclusively from 3D cameras acquisitions. We evaluate the accuracy of the calculated trajectory, thanks to a reference trajectory obtained by a total station.


Sign in / Sign up

Export Citation Format

Share Document