2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Lino Bianco

AbstractRuins are a statement on the building materials used and the construction method employed. Casa Ippolito, now in ruins, is typical of 17th-century Maltese aristocratic country residences. It represents an illustration of secondary or anthropogenic geodiversity. This paper scrutinises these ruins as a primary source in reconstructing the building’s architecture. The methodology involved on-site geographical surveying, including visual inspection and non-invasive tests, a geological survey of the local lithostratigraphy, and examination of notarial deeds and secondary sources to support findings about the building’s history as read from its ruins. An unmanned aerial vehicle was used to digitally record the parlous state of the architectural structure and karsten tubes were used to quantify the surface porosity of the limestone. The results are expressed from four perspectives. The anatomy of Casa Ippolito, as revealed in its ruins, provides a cross-section of its building history and shows two distinct phases in its construction. The tissue of Casa Ippolito—the building elements and materials—speaks of the knowledge of raw materials and their properties among the builders who worked on both phases. The architectural history of Casa Ippolito reveals how it supported its inhabitants’ wellbeing in terms of shelter, water and food. Finally, the ruins in their present state bring to the fore the site’s potential for cultural tourism. This case study aims to show that such ruins are not just geocultural remains of historical built fabric. They are open wounds in the built structure; they underpin the anatomy of the building and support insights into its former dynamics. Ruins offer an essay in material culture and building physics. Architectural ruins of masonry structures are anthropogenic discourse rendered in stone which facilitate not only the reconstruction of spaces but also places for human users; they are a statement on the wellbeing of humanity throughout history.


Buildings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 242
Author(s):  
Christoph Schünemann ◽  
David Schiela ◽  
Regine Ortlepp

Can building performance simulation reproduce measured summertime indoor conditions of a multi-residential building in good conformity? This question is answered by calibrating simulated to monitored room temperatures of several rooms of a multi-residential building for an entire summer in two process steps. First, we did a calibration for several days without the residents being present to validate the building physics of the 3D simulation model. Second, the simulations were calibrated for the entire summer period, including the residents’ impact on evolving room temperature and overheating. As a result, a high degree of conformity between simulation and measurement could be achieved for all monitored rooms. The credibility of our results was secured by a detailed sensitivity analysis under varying meteorological conditions, shading situations, and window ventilation or room use in the simulation model. For top floor dwellings, a high overheating intensity was evoked by a combination of insufficient use of night-time window ventilation and non-heat-adapted residential behavior in combination with high solar gains and low heat storage capacities. Finally, the overall findings were merged into a process guideline to describe how a step-by-step calibration of residential building simulation models can be done. This guideline is intended to be a starting point for future discussions about the validity of the simplified boundary conditions which are often used in present-day standard overheating assessment.


2016 ◽  
Vol 824 ◽  
pp. 477-484 ◽  
Author(s):  
Miroslav Čekon ◽  
Richard Slávik ◽  
Peter Juras

Solar radiation exposure and its monitoring does have not only the importance for climate science and meteorology however is equally of highly relevant use for the field of Building Science as primarily those of analyzing thermal aspects in building physics. Here the measuring of solar irradiance by means of well-established solar instruments can be applied whose advances have been undergoing steep progress. Currently, a silicon photodiode element, as a truly obtainable form, may have a feasible exploitation in the field of building applications concerning the solar radiant flux quantifying. It represents a small optoelectronic element and has a several exploitable advantages. The paper presents a perspective alternative to monitor solar irradiance. Own measurement assembly is proposed and introduced. Initial in-situ measurements are performed and final comparability with existing commercial solar instruments is presented. An obtained correlation with existing types demonstrates its applicability to the field of building science and solar energy.


2021 ◽  
Author(s):  
Marko Pinterić
Keyword(s):  

2017 ◽  
Vol 38 (3) ◽  
pp. 351-375 ◽  
Author(s):  
Salah Imam ◽  
David A Coley ◽  
Ian Walker

One of the most discussed issues in the design community is the performance gap. In this research, we investigate for the first time whether part of the gap might be caused by the modelling literacy of design teams. A total of 108 building modellers were asked to comment on the importance of obtaining and using accurate values for 21 common modelling input variables, from U-values to occupancy schedules when using dynamic simulation to estimate annual energy demand. The questioning was based on a real building for which high-resolution energy, occupancy and temperature data were recorded. A sensitivity analysis was then conducted using a model of the building (based on the measured data) by perturbing one parameter in each simulation. The effect of each perturbation on the annual energy consumption given by the model was found and a ranked list generated. The order of this list was then compared to that given by the modellers for the same changes in the parameters. A correlation analysis indicated little correlation between which variables were thought to be important by the modellers and which proved to be objectively important. k-means cluster analysis identified subgroups of modellers and showed that 25% of the people tested were making judgements that appeared worse than a person responding at random. Follow-up checks showed that higher level qualifications, or having many years of experience in modelling, did not improve the accuracy of people’s predictions. In addition, there was no correlation between modellers, with many ranking some parameters as important that others thought irrelevant. Using a three-part definition of literacy, it is concluded that this sample of modellers, and by implication the population of building modellers, cannot be considered modelling literate. This indicates a new cause of the performance gap. The results suggest a need and an opportunity for both industry and universities to increase their efforts with respect to building physics education, and if this is done, a part of the performance gap could be rapidly closed. Practical application: In any commercial simulation, the modeller will have to decide which parameters must be included and which might be ignored due to lack of time and/or data, and how much any approximations might perturb the results. In this paper, the judgment of 108 modellers was compared against each other. The results show that the internal mental models of thermal modellers disagree with one another, and disagree with the results of a validated thermal model. The lessons learnt will be of great utility to modellers, and those educating the next generation of modellers.


Sign in / Sign up

Export Citation Format

Share Document