scholarly journals Guidelines to Calibrate a Multi-Residential Building Simulation Model Addressing Overheating Evaluation and Residents’ Influence

Buildings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 242
Author(s):  
Christoph Schünemann ◽  
David Schiela ◽  
Regine Ortlepp

Can building performance simulation reproduce measured summertime indoor conditions of a multi-residential building in good conformity? This question is answered by calibrating simulated to monitored room temperatures of several rooms of a multi-residential building for an entire summer in two process steps. First, we did a calibration for several days without the residents being present to validate the building physics of the 3D simulation model. Second, the simulations were calibrated for the entire summer period, including the residents’ impact on evolving room temperature and overheating. As a result, a high degree of conformity between simulation and measurement could be achieved for all monitored rooms. The credibility of our results was secured by a detailed sensitivity analysis under varying meteorological conditions, shading situations, and window ventilation or room use in the simulation model. For top floor dwellings, a high overheating intensity was evoked by a combination of insufficient use of night-time window ventilation and non-heat-adapted residential behavior in combination with high solar gains and low heat storage capacities. Finally, the overall findings were merged into a process guideline to describe how a step-by-step calibration of residential building simulation models can be done. This guideline is intended to be a starting point for future discussions about the validity of the simplified boundary conditions which are often used in present-day standard overheating assessment.

2020 ◽  
Vol 41 (3) ◽  
pp. 261-279 ◽  
Author(s):  
Robert S McLeod ◽  
Michael Swainson ◽  
Christina J Hopfe ◽  
Kostas Mourkos ◽  
Chris Goodier

With the help of building diagnostics, the causes and solutions to complex problems in buildings can be determined. In central and greater London, an increasing number of cases of chronic, year-round, overheating in buildings have been reported. We present three cases of unexpected temperatures in multi-storey residential buildings. Detailed analysis and modelling of these scenarios have led to an investigation of whether the way in which infiltration is currently modelled in building performance simulation may be exerting a pronounced effect on the results of overheating studies. An EnergyPlus model, of one of the dwellings in a multi-residential building in London, was created to investigate the influence of infiltration and exfiltration pathway assumptions on the prediction of overheating. The simulation results were compared to empirical data and show that the predicted indoor temperatures are highly sensitive to how the infiltration airflow network is modelled. The findings of this study have been used to provide practical guidance for modellers and building designers on critical aspects to consider when creating building performance simulation models to ensure more reliable outcomes. Overheating in buildings is an emerging topic of critical importance to the future of the built environment. The importance of understanding infiltration pathways in assessing and modelling overheating risks in flats and multi-residential buildings has been hitherto underestimated or simply ignored. In this paper, examples are given which highlight the need for a fuller understanding of internal air movement where accurate predictions of internal temperatures are required. At present, common building simulation practices and existing technical memorandum (TM) standards are masking the problem and do not provide a basis from which typical or worst-case scenarios can be adequately considered.


2018 ◽  
Vol 10 (1) ◽  
pp. 47
Author(s):  
Yu-Ling He ◽  
Qing-Fa Meng ◽  
Ping Wang ◽  
Wen-Qiang Tao

In this paper, a new method based on PROE-ANSOFT Information Interaction for building 3D model of turbo-generator structure is proposed, which can solve those problems such as low efficiency of surface modeling, the lack of physical connection relation for the automatic turbo-generator integral structure, the occurrence of insufficient memory and even crashes for imported PROE model. Taking the stator winding coil of a turbo-generator as an example, the establishment process of 3D solid model is given. On this basis, the overall structure of turbo-generator in the ANSOFT working platform is completed. And the advantages and disadvantages of five kinds of simulation models in ANSOFT working platform are compared and analyzed. The results show that the 3D simulation model drawn by this method can be no longer limited to the special solution environment of electromagnetic field symmetry. Meanwhile, this model can simulate the real physical connection relationship, and complete the division of the simulation model, which will be helpful for the further simulation analysis of the finite element software.


2021 ◽  
Vol 17 (8) ◽  
pp. e1009227
Author(s):  
Kai Budde ◽  
Jacob Smith ◽  
Pia Wilsdorf ◽  
Fiete Haack ◽  
Adelinde M. Uhrmacher

For many biological systems, a variety of simulation models exist. A new simulation model is rarely developed from scratch, but rather revises and extends an existing one. A key challenge, however, is to decide which model might be an appropriate starting point for a particular problem and why. To answer this question, we need to identify entities and activities that contributed to the development of a simulation model. Therefore, we exploit the provenance data model, PROV-DM, of the World Wide Web Consortium and, building on previous work, continue developing a PROV ontology for simulation studies. Based on a case study of 19 Wnt/β-catenin signaling models, we identify crucial entities and activities as well as useful metadata to both capture the provenance information from individual simulation studies and relate these forming a family of models. The approach is implemented in WebProv, a web application for inserting and querying provenance information. Our specialization of PROV-DM contains the entities Research Question, Assumption, Requirement, Qualitative Model, Simulation Model, Simulation Experiment, Simulation Data, and Wet-lab Data as well as activities referring to building, calibrating, validating, and analyzing a simulation model. We show that most Wnt simulation models are connected to other Wnt models by using (parts of) these models. However, the overlap, especially regarding the Wet-lab Data used for calibration or validation of the models is small. Making these aspects of developing a model explicit and queryable is an important step for assessing and reusing simulation models more effectively. Exposing this information helps to integrate a new simulation model within a family of existing ones and may lead to the development of more robust and valid simulation models. We hope that our approach becomes part of a standardization effort and that modelers adopt the benefits of provenance when considering or creating simulation models.


2021 ◽  
Author(s):  
Kai Budde ◽  
Jacob Smith ◽  
Pia Wilsdorf ◽  
Fiete Haack ◽  
Adelinde M. Uhrmacher

AbstractFor many cell-biological systems, a variety of simulation models exist. A new simulation model is rarely developed from scratch, but rather revises and extends an existing one.A key challenge, however, is to decide which model might be an appropriate starting point for a particular problem and why. To answer this question, we need to identify and look at entities and activities that contributed to the development of a simulation model.Therefore, we exploit the PROV Data Model (PROV-DM) and, building on previous work, continue developing a PROV ontology for simulation models. Based on a concrete case study of 19 Wnt/β-catenin signaling models, we identify crucial entities and activities as well as useful metadata to both capture the provenance information of individual simulation studies and relate these forming a family of models. The approach is implemented inWebProv, which allows one to insert and query provenance information.Our specialization of PROV-DM contains the entities Research Question, Assumption, Requirement, Qualitative Model, Simulation Model, Simulation Experiment, Simulation Data, and Wet-lab Data as well as activities referring to building, calibrating, validating, and analyzing a simulation model. We show that most Wnt simulation models are connected to other Wnt models by using (parts of) these models. However, the overlap, especially regarding the Wet-lab Data used for calibration or validation of Simulation Models is small.Making these aspects of developing a model explicit and queryable is a crucial step for assessing and reusing simulation models more effectively. The unambiguous specification of information helps to integrate a new simulation model within the family of existing ones. Our approach opens up a wealth of knowledge that may lead to the development of more robust and valid simulation models.We hope that it becomes part of a standardization effort and that modelers adopt the benefits of provenance when considering or creating simulation models.Author summaryWe revise a provenance ontology for simulation studies of cellular biochemical models. Provenance information is useful for understanding the creation of a simulation model, because it does not only contain information about the entities and activities that have led to a simulation model but also the relations of these, which can be visualized. It provides additional structure as research questions, assumptions, and requirements are singled out and explicitly related along with data, qualitative models, simulation models, and simulation experiments through a small set of predefined but extensible activities.We have applied our concept to a family of 19 Wnt signaling models and implemented a web-based tool (WebProv) to store the provenance information of these studies. The resulting provenance graph visualizes the story line within simulation studies and demonstrates the creation and calibration of simulation models, the successive attempts of validation and extension, and shows, beyond an individual simulation study, how the Wnt models are related. Thereby, the steps and sources that contributed to a simulation model are made explicit.Our approach complements other approaches aimed at facilitating the reuse and assessment of simulation products in systems biology such as model repositories as well as annotation and documentation guidelines.


2021 ◽  
Vol 346 ◽  
pp. 03079
Author(s):  
Vitaly Dolgov ◽  
Petr Nikishechkin ◽  
Sergey Ivashin ◽  
Nikita Dolgov

The paper considers the simulation modeling features of various types machine-building enterprises. A tool set for building simulation models of various production types is proposed. A method of a combined approach for simulation model implementation of mixed production types is proposed and described.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3876
Author(s):  
Sameh Monna ◽  
Adel Juaidi ◽  
Ramez Abdallah ◽  
Aiman Albatayneh ◽  
Patrick Dutournie ◽  
...  

Since buildings are one of the major contributors to global warming, efforts should be intensified to make them more energy-efficient, particularly existing buildings. This research intends to analyze the energy savings from a suggested retrofitting program using energy simulation for typical existing residential buildings. For the assessment of the energy retrofitting program using computer simulation, the most commonly utilized residential building types were selected. The energy consumption of those selected residential buildings was assessed, and a baseline for evaluating energy retrofitting was established. Three levels of retrofitting programs were implemented. These levels were ordered by cost, with the first level being the least costly and the third level is the most expensive. The simulation models were created for two different types of buildings in three different climatic zones in Palestine. The findings suggest that water heating, space heating, space cooling, and electric lighting are the highest energy consumers in ordinary houses. Level one measures resulted in a 19–24 percent decrease in energy consumption due to reduced heating and cooling loads. The use of a combination of levels one and two resulted in a decrease of energy consumption for heating, cooling, and lighting by 50–57%. The use of the three levels resulted in a decrease of 71–80% in total energy usage for heating, cooling, lighting, water heating, and air conditioning.


2013 ◽  
Vol 309 ◽  
pp. 366-371 ◽  
Author(s):  
František Manlig ◽  
Radek Havlik ◽  
Alena Gottwaldova

This paper deals with research in computer simulation of manufacturing processes. The paper summarizes the procedures associated with developing the model, experimenting with and evaluating the model results. The key area is of experimentation with the simulation model and evaluation using indicators or multi-criteria functions. With regards to the experiment the crucial variables are the simulation model. The key ideas are to set the number of variables, depending on what a given simulation will be. For example, when introducing new technology into production, modify the type of warehouse, saving workers, thus economizing. The simulation models for the operational management uses simplified models, if possible, a minimum number of variables to obtain the result in shortest possible time. These models are more user friendly and the course will be conducted mostly in the background. An example of a criteria function is the number of parts produced or production time. Multi-criteria function has given us the opportunity to make better quality decisions. It is based on the composition of several parameters, including their weight to one end point. The type of evaluation functions, whether it is an indicator or criteria function is selected and based on customer requirements. In most cases it is recommended to use the multi-dimensional function. It gives us a more comprehensive view of the results from the model and facilitates decision-making. The result of this paper is a display of setting parameters for the experimentation on a sample model. Furthermore, the comparisons of results with a multi-criteria objective function and one-criterion indicator.


Author(s):  
Mahyar Asadi ◽  
Ghazi Alsoruji

Weld sequence optimization, which is determining the best (and worst) welding sequence for welding work pieces, is a very common problem in welding design. The solution for such a combinatorial problem is limited by available resources. Although there are fast simulation models that support sequencing design, still it takes long because of many possible combinations, e.g. millions in a welded structure involving 10 passes. It is not feasible to choose the optimal sequence by evaluating all possible combinations, therefore this paper employs surrogate modeling that partially explores the design space and constructs an approximation model from some combinations of solutions of the expensive simulation model to mimic the behavior of the simulation model as closely as possible but at a much lower computational time and cost. This surrogate model, then, could be used to approximate the behavior of the other combinations and to find the best (and worst) sequence in terms of distortion. The technique is developed and tested on a simple panel structure with 4 weld passes, but essentially can be generalized to many weld passes. A comparison between the results of the surrogate model and the full transient FEM analysis all possible combinations shows the accuracy of the algorithm/model.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4446
Author(s):  
Do-In Kim

This paper presents an event identification process in complementary feature extractions via convolutional neural network (CNN)-based event classification. The CNN is a suitable deep learning technique for addressing the two-dimensional power system data as it directly derives information from a measurement signal database instead of modeling transient phenomena, where the measured synchrophasor data in the power systems are allocated by time and space domains. The dynamic signatures in phasor measurement unit (PMU) signals are analyzed based on the starting point of the subtransient signals, as well as the fluctuation signature in the transient signal. For fast decision and protective operations, the use of narrow band time window is recommended to reduce the acquisition delay, where a wide time window provides high accuracy due to the use of large amounts of data. In this study, two separate data preprocessing methods and multichannel CNN structures are constructed to provide validation, as well as the fast decision in successive event conditions. The decision result includes information pertaining to various event types and locations based on various time delays for the protective operation. Finally, this work verifies the event identification method through a case study and analyzes the effects of successive events in addition to classification accuracy.


Author(s):  
Dheeraj Agarwal ◽  
Linghai Lu ◽  
Gareth D. Padfield ◽  
Mark D. White ◽  
Neil Cameron

High-fidelity rotorcraft flight simulation relies on the availability of a quality flight model that further demands a good level of understanding of the complexities arising from aerodynamic couplings and interference effects. One such example is the difficulty in the prediction of the characteristics of the rotorcraft lateral-directional oscillation (LDO) mode in simulation. Achieving an acceptable level of the damping of this mode is a design challenge requiring simulation models with sufficient fidelity that reveal sources of destabilizing effects. This paper is focused on using System Identification to highlight such fidelity issues using Liverpool's FLIGHTLAB Bell 412 simulation model and in-flight LDO measurements from the bare airframe National Research Council's (Canada) Advanced Systems Research Aircraft. The simulation model was renovated to improve the fidelity of the model. The results show a close match between the identified models and flight test for the LDO mode frequency and damping. Comparison of identified stability and control derivatives with those predicted by the simulation model highlight areas of good and poor fidelity.


Sign in / Sign up

Export Citation Format

Share Document