A New Programming Methodology for Rapid Deployment of Computationally Intensive Broadcast Codecs

Author(s):  
Michael W. Bruns ◽  
Martin A. Hunt ◽  
Lin Tong ◽  
Keith Bindloss
2016 ◽  
Vol 64 (S 01) ◽  
Author(s):  
R. Malik ◽  
M. Roosta-Azad ◽  
H. Bigdeli ◽  
A. Zandi ◽  
H. Holst ◽  
...  

Author(s):  
B. Aparna ◽  
S. Madhavi ◽  
G. Mounika ◽  
P. Avinash ◽  
S. Chakravarthi

We propose a new design for large-scale multimedia content protection systems. Our design leverages cloud infrastructures to provide cost efficiency, rapid deployment, scalability, and elasticity to accommodate varying workloads. The proposed system can be used to protect different multimedia content types, including videos, images, audio clips, songs, and music clips. The system can be deployed on private and/or public clouds. Our system has two novel components: (i) method to create signatures of videos, and (ii) distributed matching engine for multimedia objects. The signature method creates robust and representative signatures of videos that capture the depth signals in these videos and it is computationally efficient to compute and compare as well as it requires small storage. The distributed matching engine achieves high scalability and it is designed to support different multimedia objects. We implemented the proposed system and deployed it on two clouds: Amazon cloud and our private cloud. Our experiments with more than 11,000 videos and 1 million images show the high accuracy and scalability of the proposed system. In addition, we compared our system to the protection system used by YouTube and our results show that the YouTube protection system fails to detect most copies of videos, while our system detects more than 98% of them.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1106
Author(s):  
Vladimir L. Petrović ◽  
Dragomir M. El Mezeni ◽  
Andreja Radošević

Quasi-cyclic low-density parity-check (QC–LDPC) codes are introduced as a physical channel coding solution for data channels in 5G new radio (5G NR). Depending on the use case scenario, this standard proposes the usage of a wide variety of codes, which imposes the need for high encoder flexibility. LDPC codes from 5G NR have a convenient structure and can be efficiently encoded using forward substitution and without computationally intensive multiplications with dense matrices. However, the state-of-the-art solutions for encoder hardware implementation can be inefficient since many hardware processing units stay idle during the encoding process. This paper proposes a novel partially parallel architecture that can provide high hardware usage efficiency (HUE) while achieving encoder flexibility and support for all 5G NR codes. The proposed architecture includes a flexible circular shifting network, which is capable of shifting a single large bit vector or multiple smaller bit vectors depending on the code. The encoder architecture was built around the shifter in a way that multiple parity check matrix elements can be processed in parallel for short codes, thus providing almost the same level of parallelism as for long codes. The processing schedule was optimized for minimal encoding time using the genetic algorithm. The optimized encoder provided high throughputs, low latency, and up-to-date the best HUE.


2021 ◽  
Vol 8 (7) ◽  
pp. 74
Author(s):  
Igor Vendramin ◽  
Andrea Lechiancole ◽  
Daniela Piani ◽  
Gaetano Nucifora ◽  
Giovanni Benedetti ◽  
...  

Sutureless and rapid-deployment bioprostheses have been introduced as alternatives to traditional prosthetic valves to reduce cardiopulmonary and aortic cross-clamp times during aortic valve replacement. These devices have also been employed in extremely demanding surgical settings, as underlined in the present review. Searches on the PubMed and Medline databases aimed to identify, from the English-language literature, the reported cases where both sutureless and rapid-deployment prostheses were employed in challenging surgical situations, usually complex reoperations sometimes even performed as bailout procedures. We have identified 25 patients for whom a sutureless or rapid-deployment prosthesis was used in complex redo procedures: 17 patients with a failing stentless bioprosthesis, 6 patients with a failing homograft, and 2 patients with the failure of a valve-sparing procedure. All patients survived reoperation and were reported to be alive 3 months to 4 years postoperatively. Sutureless and rapid-deployment bioprostheses have proved effective in replacing degenerated stentless bioprostheses and homografts in challenging redo procedures. In these settings, they should be considered as a valid alternative not only to traditional prostheses but also in selected cases to transcatheter valve-in-valve solutions.


Author(s):  
Sharon C Perelman ◽  
Steven Erde ◽  
Lynda Torre ◽  
Tunaidi Ansari

Abstract COVID-19 quickly immobilized healthcare systems in the United States during the early stages of the outbreak. While much of the ensuing response focused on supporting the medical infrastructure, Columbia University College of Dental Medicine pursued a solution to triage and safely treat patients with dental emergencies amidst the pandemic. Considering rapidly changing guidelines from governing bodies, dental infection control protocols and our clinical faculty's expertise, we modeled, built, and implemented a screening algorithm, which provides decision support as well as insight into COVID-19 status and clinical comorbidities, within a newly integrated Electronic Health Record (EHR). Once operationalized, we analyzed the data and outcomes of its utilization and found that it had effectively guided providers in triaging patient needs in a standardized methodology. This article describes the algorithm's rapid development to assist faculty providers in identifying patients with the most urgent needs, thus prioritizing treatment of dental emergencies during the pandemic.


Sign in / Sign up

Export Citation Format

Share Document