scholarly journals Electrochemical oxidation and electroanalysis of paracetamol on a boron-doped diamond anode material in aqueous electrolytes

Author(s):  
Kouakou Etienne Kouadio ◽  
Ollo Kambiré ◽  
Konan Sylvestre Koffi ◽  
Lassine Ouattara

Electrochemical oxidation of paracetamol on boron-doped diamond (BDD) anode has been studied by cyclic voltammetry and preparative electrolysis. Quantification of paracetamol during electrolysis has been mainly realized by differential pulse voltammetry technique in the Britton-Robinson buffer solutions used as the supporting electrolyte. Various parameters such as current intensity, nature of the supporting electrolyte, temperature, and initial concentration of paracetamol have been investigated. The electrochemical characterization by the outer sphere Fe(III)/Fe(II) redox couple has also been performed, showing the metallic character of BDD electrode. The obtained linear dependency of the oxidation peak current intensity and paracetamol concentration indicates that BDD electrode can be used as an electrochemical sensor for the detection and quantification of paracetamol. The investi­gation of paracetamol degradation during preparative electrolysis showed that: (i) the degradation rate of paracetamol increases with increase of current intensity applied; (ii) for the initial concentrations of 10, 6 and 1 mM of paracetamol, its oxidation rate reaches 60, 78 and 99 % respectively, after 1 h of electrolysis in 0.3 M H2SO4 (pH 0.6) at applied current density of 70 mA cm-2; (iii) at temperatures of electrolyte solution of 28, 55 and 75 °C, paracetamol oxidation rate reached 85, 92 and 97 % respectively, after 2 h at applied current density of 70 mA cm2. From the investigation of the effect of pH value of electrolyte solution, it appears that oxidation of paracetamol is more favorable in acidic solution at pH 3 than solutions of higher pH values.

2017 ◽  
Vol 76 (12) ◽  
pp. 3227-3235 ◽  
Author(s):  
Arwa Abdelhay ◽  
Inshad Jum'h ◽  
Enas Abdulhay ◽  
Akeel Al-Kazwini ◽  
Mashael Alzubi

Abstract A non-sacrificial boron-doped diamond electrode was prepared in the laboratory and used as a novel anode for electrochemical oxidation of poultry slaughterhouse wastewater. This wastewater poses environmental threats as it is characterized by a high content of recalcitrant organics. The influence of several process variables, applied current density, initial pH, supporting electrolyte nature, and concentration of electrocoagulant, on chemical oxygen demand (COD) removal, color removal, and turbidity removal was investigated. Results showed that raising the applied current density to 3.83 mA/cm2 has a positive effect on COD removal, color removal, and turbidity removal. These parameters increased to 100%, 90%, and 80% respectively. A low pH of 5 favored oxidants generation and consequently increased the COD removal percentage to reach 100%. Complete removal of COD had occurred in the presence of NaCl (1%) as supporting electrolyte. Na2SO4 demonstrated lower efficiency than NaCl in terms of COD removal. The COD decay kinetics follows the pseudo-first-order reaction. The simultaneous use of Na2SO4 and FeCl3 decreased the turbidity in wastewater by 98% due to electrocoagulation.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5893
Author(s):  
Faléstine Souiad ◽  
Ana Sofia Rodrigues ◽  
Ana Lopes ◽  
Lurdes Ciríaco ◽  
Maria José Pacheco ◽  
...  

This paper studies the degradation of methiocarb, a highly hazardous pesticide found in waters and wastewaters, through an electro-Fenton process, using a boron-doped diamond anode and a carbon felt cathode; and evaluates its potential to reduce toxicity towards the model organism Daphnia magna. The influence of applied current density and type and concentration of added iron source, Fe2(SO4)3·5H2O or FeCl3·6H2O, is assessed in the degradation experiments of methiocarb aqueous solutions. The experimental results show that electro-Fenton can be successfully used to degrade methiocarb and to reduce its high toxicity towards D. magna. Total methiocarb removal is achieved at the applied electric charge of 90 C, and a 450× reduction in the acute toxicity towards D. magna, on average, from approximately 900 toxic units to 2 toxic units, is observed at the end of the experiments. No significant differences are found between the two iron sources studied. At the lowest applied anodic current density, 12.5 A m−2, an increase in iron concentration led to lower methiocarb removal rates, but the opposite is found at the highest applied current densities. The highest organic carbon removal is obtained at the lowest applied current density and added iron concentration.


2020 ◽  
Vol 10 (21) ◽  
pp. 7435
Author(s):  
Annabel Fernandes ◽  
Christopher Pereira ◽  
Susana Coelho ◽  
Celso Ferraz ◽  
Ana C. Sousa ◽  
...  

The ecotoxicity of methiocarb aqueous solutions treated by electrochemical oxidation was evaluated utilizing the model organism Daphnia magna. The electrodegradation experiments were performed using a boron-doped diamond anode and the influence of the applied current density and the supporting electrolyte (NaCl or Na2SO4) on methiocarb degradation and toxicity reduction were assessed. Electrooxidation treatment presented a remarkable efficiency in methiocarb complete degradation and a high potential for reducing the undesirable ecological effects of this priority substance. The reaction rate followed first-order kinetics in both electrolytes, being more favorable in a chloride medium. In fact, the presence of chloride increased the methiocarb removal rate and toxicity reduction and favored nitrogen removal. A 200× reduction in the acute toxicity towards D. magna, from 370.9 to 1.6 toxic units, was observed for the solutions prepared with NaCl after 5 h treatment at 100 A m−2. An increase in the applied current density led to an increase in toxicity towards D. magna of the treated solutions. At optimized experimental conditions, electrooxidation offers a suitable solution for the treatment and elimination of undesirable ecological effects of methiocarb contaminated industrial or agricultural wastewaters, ensuring that this highly hazardous pesticide is not transferred to the aquatic environment.


2001 ◽  
Vol 71 (3) ◽  
pp. 397-404
Author(s):  
Dimitrios Stergiopoulos ◽  
Konstantinos Dermentzis ◽  
Kokkoni Karakosta ◽  
Panagiotis Giannakoudakis

The treatment of aqueous phenol solutions is studied using the electrooxidation process with boron doped diamond (BDD) electrodes. The reduction of phenol concentration is followed by measurements of UV-Vis spectrophotometry and COD. Parameters affecting the efficiency of the electrooxidation process, such as solution pH, applied current density, initial phenol concentration, flow rate and conductivity are investigated. Effective and complete removal of phenol (]99 %) is achieved from solutions with initial phenol concentration of 100 mg/L in both, batch and continuously operated pocess.


2014 ◽  
Vol 21 (14) ◽  
pp. 8457-8465 ◽  
Author(s):  
C. I. Brinzila ◽  
N. Monteiro ◽  
M. J. Pacheco ◽  
L. Ciríaco ◽  
I. Siminiceanu ◽  
...  

2019 ◽  
Vol 31 (5) ◽  
pp. 1095-1099
Author(s):  
K. Vijayakumar ◽  
S. Geetha ◽  
M. Govindaraj

Photoelectrocoagulation treatment of aqueous solution containing, rhodamine B has been studied. Three different supporting electrolytes such as NaCl, NaNO3 and Na2SO4 were used for electrolysis. Only NaCl was found to be effective for the removal of colour from rhodamine B dye. Effects of the process variables such as pH, applied current density, electrode material, supporting electrolytes types, different concentration of electrolyte and treatment time were explored in order to find the best conditions for the degradation of rhodamine B. The complete degradation was obtained in 35 min of operating time for Fe electrode at optimum conditions such as initial pH 7.0, supporting electrolyte of 0.05 M NaCl and applied current density of 10 mA/cm2 and treatment time of 35 min. Sludge characterization was analyzed by FT-IR spectra and the morphology of sludge was characterized by SEM were discussed. The SEM image confirmed the characteristics of phases, which are amorphous or poorly crystalline in nature.


2016 ◽  
Vol 7 (4) ◽  
pp. 502-510 ◽  
Author(s):  
Inshad Jum'h ◽  
Arwa Abdelhay ◽  
Hussein Al-Taani ◽  
Ahmad Telfah ◽  
Mohammad Alnaief ◽  
...  

A boron doped diamond (BDD) electrode was employed in an electrochemical reactor to oxidize the phenolic content of Jordanian olive mill wastewater. The BDD anode was fabricated using hot filament chemical vapor deposition on niobium and the morphology of the BDD electrode was characterized using an atomic force microscope. Then, electrolysis batch runs were carried out at laboratory scale to test the effect of different process parameters, namely, initial chemical oxygen demand (COD) load (72.9, 33.8, and 0.18 g/L), the addition of Na2SO4 as supporting electrolyte, and adding NaCl along with Na2SO4, on the efficiency of the treatment process. The results were reported in terms of COD, color and turbidity removal, and pH variation. The experiments revealed that electrochemical oxidation using BDD significantly reduced the COD by 85% with no supporting electrolytes. It was observed that adding Na2SO4 with NaCl brought the COD removal to higher than 90% after 7 hours of treatment for COD loads of 72.9 and 33.8 g/L, and after 2 hours for a COD load of 0.18 g/L. Likewise, color was completely removed regardless of the initial COD load. The turbidity for samples with 72.9 and 33.8 g/L as COD load reached a minimal value of 2.5 and 1 NTU respectively.


2011 ◽  
Vol 65 (3) ◽  
Author(s):  
Cornelia Ratiu ◽  
Florica Manea ◽  
Carmen Lazau ◽  
Corina Orha ◽  
Georgeta Burtica ◽  
...  

AbstractThis paper reports the results of an investigation into enhancement of the electrochemical oxidation of p-aminophenol (4-AP) in an aqueous solution with a boron-doped diamond (BDD) electrode, assisted by photocatalysis using a zeolite-supported TiO2 (Z-TiO2) catalyst. The BDD electrode was characterised in 0.1 M Na2SO4-supporting electrolyte and the presence of 4-AP by open-circuit potential behaviour (OCP) and cyclic voltammetry (CV). The electrode behaviour was investigated in the dark and following UV irradiation and in the absence/presence of the Z-TiO2 catalyst. The electro-oxidation process was carried out using chronoamperometry (CA) and multiple-pulsed amperometry (MPA) at the selected potential under potentiostatic conditions. The electrochemical degradation process of 4-AP on the BDD electrode was improved by the application of a pulsed potential, which allowed both in-situ electrochemical cleaning of the electrode and indirect oxidation of 4-AP by oxygen evolution. The application of photocatalysis using Z-TiO2 in the 4-AP electrochemical degradation exhibited an enhanced effect when the anodic potential was set at +1.25 V vs. Ag/AgCl in the water stability region, close to the oxygen evolution potential.


Author(s):  
Hassen Trabelsi ◽  
Nasr Bensalah ◽  
Abdellatif Gadri

AbstractThe electrochemical oxidation of 1,4 dihydroxybenzene, was studied by galvanostatic electrolysis using boron-doped diamond (BDD) as anode. The efficiency of the electrochemical process was found to depend mainly on the pollutant concentration present in the waste and on the applied current density. The voltammetric results showed that hydroquinone oxidation takes place in the same potential region as that of phenol where the supporting electrolyte is stable. Synthetic wastewaters containing hydroquinone have been treated in a bench-scale electrolysis plant. This plant operates in a discontinuous mode by recirculating the waste continuously through a single-chamber electrochemical flow cell. The complete mineralization of hydroquinone and the electro-generated pollutants is obtained in the electrolytic device. HPLC analyses show the formation of carboxylic acids as the main intermediates. The high efficiency of this technology can be explained in terms of the direct electro-oxidation at the BDD surface and the oxidation carried out by hydroxyl radicals and other electro-generated oxidants.


Sign in / Sign up

Export Citation Format

Share Document