New insights into the relationship between anode material, supporting electrolyte and applied current density in anodic oxidation processes

2017 ◽  
Vol 229 ◽  
pp. 55-64 ◽  
Author(s):  
Chunyong Zhang ◽  
Zhefeng Zhang ◽  
Zhenzhu He ◽  
Degang Fu
2018 ◽  
Vol 42 (18) ◽  
pp. 14876-14882 ◽  
Author(s):  
Mahnaz Sharafi-Kolkeshvandi ◽  
Davood Nematollahi ◽  
Firozeh Pouladi ◽  
Pouria Patoghi

Green syntheses of two different series of new benzofuran derivatives were carried out by anodic oxidation of 4,4′-biphenol (4BP) in the presence of some CH-acid compounds (malononitrile, methyl cyanoacetate and ethyl cyanoacetate) as nucleophiles by controlling the potential during electrolysis.


2017 ◽  
Vol 76 (12) ◽  
pp. 3227-3235 ◽  
Author(s):  
Arwa Abdelhay ◽  
Inshad Jum'h ◽  
Enas Abdulhay ◽  
Akeel Al-Kazwini ◽  
Mashael Alzubi

Abstract A non-sacrificial boron-doped diamond electrode was prepared in the laboratory and used as a novel anode for electrochemical oxidation of poultry slaughterhouse wastewater. This wastewater poses environmental threats as it is characterized by a high content of recalcitrant organics. The influence of several process variables, applied current density, initial pH, supporting electrolyte nature, and concentration of electrocoagulant, on chemical oxygen demand (COD) removal, color removal, and turbidity removal was investigated. Results showed that raising the applied current density to 3.83 mA/cm2 has a positive effect on COD removal, color removal, and turbidity removal. These parameters increased to 100%, 90%, and 80% respectively. A low pH of 5 favored oxidants generation and consequently increased the COD removal percentage to reach 100%. Complete removal of COD had occurred in the presence of NaCl (1%) as supporting electrolyte. Na2SO4 demonstrated lower efficiency than NaCl in terms of COD removal. The COD decay kinetics follows the pseudo-first-order reaction. The simultaneous use of Na2SO4 and FeCl3 decreased the turbidity in wastewater by 98% due to electrocoagulation.


Author(s):  
Kouakou Etienne Kouadio ◽  
Ollo Kambiré ◽  
Konan Sylvestre Koffi ◽  
Lassine Ouattara

Electrochemical oxidation of paracetamol on boron-doped diamond (BDD) anode has been studied by cyclic voltammetry and preparative electrolysis. Quantification of paracetamol during electrolysis has been mainly realized by differential pulse voltammetry technique in the Britton-Robinson buffer solutions used as the supporting electrolyte. Various parameters such as current intensity, nature of the supporting electrolyte, temperature, and initial concentration of paracetamol have been investigated. The electrochemical characterization by the outer sphere Fe(III)/Fe(II) redox couple has also been performed, showing the metallic character of BDD electrode. The obtained linear dependency of the oxidation peak current intensity and paracetamol concentration indicates that BDD electrode can be used as an electrochemical sensor for the detection and quantification of paracetamol. The investi­gation of paracetamol degradation during preparative electrolysis showed that: (i) the degradation rate of paracetamol increases with increase of current intensity applied; (ii) for the initial concentrations of 10, 6 and 1 mM of paracetamol, its oxidation rate reaches 60, 78 and 99 % respectively, after 1 h of electrolysis in 0.3 M H2SO4 (pH 0.6) at applied current density of 70 mA cm-2; (iii) at temperatures of electrolyte solution of 28, 55 and 75 °C, paracetamol oxidation rate reached 85, 92 and 97 % respectively, after 2 h at applied current density of 70 mA cm2. From the investigation of the effect of pH value of electrolyte solution, it appears that oxidation of paracetamol is more favorable in acidic solution at pH 3 than solutions of higher pH values.


2019 ◽  
Vol 31 (5) ◽  
pp. 1095-1099
Author(s):  
K. Vijayakumar ◽  
S. Geetha ◽  
M. Govindaraj

Photoelectrocoagulation treatment of aqueous solution containing, rhodamine B has been studied. Three different supporting electrolytes such as NaCl, NaNO3 and Na2SO4 were used for electrolysis. Only NaCl was found to be effective for the removal of colour from rhodamine B dye. Effects of the process variables such as pH, applied current density, electrode material, supporting electrolytes types, different concentration of electrolyte and treatment time were explored in order to find the best conditions for the degradation of rhodamine B. The complete degradation was obtained in 35 min of operating time for Fe electrode at optimum conditions such as initial pH 7.0, supporting electrolyte of 0.05 M NaCl and applied current density of 10 mA/cm2 and treatment time of 35 min. Sludge characterization was analyzed by FT-IR spectra and the morphology of sludge was characterized by SEM were discussed. The SEM image confirmed the characteristics of phases, which are amorphous or poorly crystalline in nature.


2020 ◽  
Vol 10 (21) ◽  
pp. 7435
Author(s):  
Annabel Fernandes ◽  
Christopher Pereira ◽  
Susana Coelho ◽  
Celso Ferraz ◽  
Ana C. Sousa ◽  
...  

The ecotoxicity of methiocarb aqueous solutions treated by electrochemical oxidation was evaluated utilizing the model organism Daphnia magna. The electrodegradation experiments were performed using a boron-doped diamond anode and the influence of the applied current density and the supporting electrolyte (NaCl or Na2SO4) on methiocarb degradation and toxicity reduction were assessed. Electrooxidation treatment presented a remarkable efficiency in methiocarb complete degradation and a high potential for reducing the undesirable ecological effects of this priority substance. The reaction rate followed first-order kinetics in both electrolytes, being more favorable in a chloride medium. In fact, the presence of chloride increased the methiocarb removal rate and toxicity reduction and favored nitrogen removal. A 200× reduction in the acute toxicity towards D. magna, from 370.9 to 1.6 toxic units, was observed for the solutions prepared with NaCl after 5 h treatment at 100 A m−2. An increase in the applied current density led to an increase in toxicity towards D. magna of the treated solutions. At optimized experimental conditions, electrooxidation offers a suitable solution for the treatment and elimination of undesirable ecological effects of methiocarb contaminated industrial or agricultural wastewaters, ensuring that this highly hazardous pesticide is not transferred to the aquatic environment.


2012 ◽  
Vol 66 (11) ◽  
pp. 2468-2474 ◽  
Author(s):  
X. Y. Duan ◽  
F. Ma ◽  
L. M. Chang

The electrochemical oxidation of 4-chlorophenol (4-CP) in aqueous solution was studied by electrochemical oxidation using modified PbO2 electrode as anode. The influence of several operating parameters, such as initial 4-CP concentration, applied current density, and supporting electrolyte (Na2SO4) concentration was investigated. Ultraviolet spectroscopy and total organic carbon (TOC) measurements were conducted to study the kinetics of 4-CP electrochemical reaction and the mineralization efficiency of 4-CP. The experimental results showed that the 4-CP degradation always followed a pseudo-first-order kinetics. The higher mineralization of 4-CP and the lower current efficiency (CE) were obtained by the lower initial 4-CP concentration. The applied current density showed a positive influence on the degradation of 4-CP and the removal of TOC, but a higher applied current density led to a lower CE. Although Na2SO4 concentration of 0.05 M resulted in a higher 4-CP and TOC removal, the result of one-way analysis of variance (ANOVA) indicates that Na2SO4 concentration is not the significant parameter for 4-CP removal in electrochemical oxidation.


Author(s):  
Zahia Benredjem ◽  
Karima Barbari ◽  
Imene Chaabna ◽  
Samia Saaidia ◽  
Abdelhak Djemel ◽  
...  

Abstract The Advanced Oxidation Processes (AOPs) are promising environmentally friendly technologies for the treatment of wastewater containing organic pollutants in general and particularly dyes. The aim of this work is to determine which of the AOP processes based on the Fenton reaction is more effective in degrading the methyl orange (MO) dye. The comparative study of the Fenton, photo-Fenton (PF) and electro-Fenton (EF) processes has shown that electro-Fenton is the most efficient method for oxidizing Methyl Orange. The evolution of organic matter degradation was followed by absorbance (discoloration) and COD (mineralization) measurements. The kinetics of the MO degradation by the electro-Fenton process is very rapid and the OM degradation rate reached 90.87% after 5 min. The influence of some parameters such as the concentration of the catalyst (Fe (II)), the concentration of MO, the current density, the nature and the concentration of supporting electrolyte was investigated. The results showed that the degradation rate increases with the increase in the applied current density and the concentration of the supporting electrolyte. The study of the concentration effect on the rate degradation revealed optimal values for the concentrations 2.10−5 M and 75 mg L−1 of Fe (II) and MO respectively.


Sign in / Sign up

Export Citation Format

Share Document