SEARCH FOR THE MOST USEFUL GEOMETRY OF AN ACOUSTIC JOURNAL BEARING

Tribologia ◽  
2018 ◽  
Vol 273 (3) ◽  
pp. 15-66 ◽  
Author(s):  
Rafał GAWARKIEWICZ

Computer simulations of a number of journal bearing’s geometries utilising acoustic levitation were carried out. The choice of the best geometry depended on the ability of a deformed shape, created by piezo-electric elements, to facilitate squeeze film ultrasonic levitation, and also to create three evenly distributed diverging aerodynamic gaps. Deformations of analysed variants of the bearing’s shape were generated by numerical simulations utilising the finite element method. For the chosen shapes of geometry, prototype bearings were made and their usefulness verified experimentally. As a result, the bearing with the highest load carrying capacity was identified.

2020 ◽  
Vol 299 ◽  
pp. 1184-1189
Author(s):  
V.V. Zhukov ◽  
Anton V. Eremin ◽  
D.V. Stepanec

In this article, the object of study is a three–layer honeycomb panel with fixing elements (FE), which are used for transporting the panel, and fixing it to the spacecraft. The goal of the work is to determine experimentally the load carrying capacity of the fixing elements under various types of loading, to determine the load carrying capacity of the honeycomb panel of the spacecraft at fixing points and further comparison of the experimental results with the finite element method results calculated by MSC.Patran / Nastran. A method for conducting static tests of fixing elements of a spacecraft honeycomb panel under an external load is described, a description of computer technology of a finite–element solution to the problem of static strength of a honeycomb panel structure in the MSC.Patran environment is presented, and a finite–element model of a honeycomb panel is designed. An assessment of the strength of a three–layer structure at fixing points was carried out, followed by validation of the finite–element model of a honeycomb panel. On the basis of the validated model, the evaluation of the strength of the honeycomb structure was carried out; based on results obtained, the conclusion has been made about the convergence of the results by the finite element method with the results obtained during the experiment.


1998 ◽  
Vol 25 (3) ◽  
pp. 585-594 ◽  
Author(s):  
Murray C Temple ◽  
Sherief SS Sakla

Single-angle compression members are complex members to analyze and design. The two generally accepted design procedures, the simple-column and the beam-column approaches, in general, underestimate the load-carrying capacity of single-angle compression members welded by one leg to a gusset plate fixed to a rigid support. One of the reasons is that these approaches do not properly account for the end constraint provided by the gusset plate. The effective length factor can be adjusted, but this is difficult to do as the end restraint is not easy to evaluate in many practical cases. Another reason is that these approaches are not based on a rational understanding of the failure mechanism of these members. An experimental program confirmed that the finite element method can be used, with a reasonable degree of accuracy, to predict the behavior and load-carrying capacity of single-angle compression members welded by one leg to a gusset plate fixed to a rigid support. The finite element method was used to study some 1800 different combinations of parameters. It was found that out-of-straightness, residual stresses in the angle section, Young's modulus of elasticity, and the unconnected gusset plate length do not have a great effect on the load-carrying capacity. The most significant parameter is the gusset plate thickness with the gusset plate width being the second most important parameter. An empirical design equation is proposed.Key words: angles, buckling, columns (structural), compressive resistance, design equation, gusset plates.


Author(s):  
David Mikolášek ◽  
Antonín Lokaj ◽  
Jiří Brožovský ◽  
Oldřich Sucharda

Abstract The paper analyses a drawn steel joint in round logs for which several types of reinforcements have been proposed. The load-carrying capacity of the reinforcements have been tested in laboratories. At the same time, numerical modelling has been performed - it has focused, in particular, on rigidity of the joints during the loading process. Physical and geometrical nonlinearities have been taken into account. The Finite Element Method and 3D computation models have been used in the numerical calculations.


2021 ◽  
Vol 353 ◽  
pp. 01013
Author(s):  
Tingwei Wang

Finite element method and fiber model method were used to calculate the load-carrying capacity of the specimens. Based on the experimental and theoretical analysis, simplified calculation method of the load-carrying capacity for this kind of member is proposed. It indicates that finite element method result is relatively small, fiber model method result accords well with the experimental result. Circular reinforced concrete members covered with steel tube presents both the characteristics of reinforced concrete and concrete filled steel tube member, showing higher load-carrying capacity and greater deformability. The load-carrying capacity of circular reinforced concrete members covered with steel tube can be calculated by the means of the method of reinforced concrete member with confined concrete. The result predicted by the simplified method is in good agreement with the experimental result.


2018 ◽  
Vol 10 (09) ◽  
pp. 1850100
Author(s):  
Sadegh Imani Yengejeh ◽  
Andreas Öchsner ◽  
Seyedeh Alieh Kazemi ◽  
Maksym Rybachuk

We report on the structural stability of ideal (defect-free) and structurally and morphologically degenerate carbon nanotubes and nanotube junction systems under axial loading based on the finite element method. We estimated the values for critical buckling load for uncapped and capped single-walled carbon nanotubes (SWCNTs) and linear and angle-adjoined SWCNT heterojunctions in ideal and structurally degenerate systems containing single-, double-, triple-, pinhole- and pentagon–heptagon (i.e., 5–7) structural defects and also containing a substitutional nitrogen (N) atom inclusion under compressive loading. Absolute atomic vacancy (defect) concentration in studied SWCNTs models was assumed to be nil for ideal systems, and was up to 3.0 at.% for structurally and morphologically degenerate systems. It was found that all types of structural defects and the morphological N-defect had reduced the load carrying capacity and mechanical strength in all SWCNT systems studied. The SWCNT models containing physically large vacant sites, such as triple- and pinhole-defects, displayed significantly lower critical load values compared to the systems that contained only a single-, double- or triple-vacancies. In addition, we found that capped SWCNTs performed marginally better in critical load carrying capacity compared to uncapped SWCNT systems. Furthermore, majority of the investigated structures displayed reduced load in SWCNTs with narrower tube widths, proportional to the size and the type of the defect investigated. The effects of chirality, such as zigzag- versus armchair-type, on the structural stability of the investigated SWCNT models were also investigated.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
N. B. Naduvinamani ◽  
Archana K. Kadadi

A theoretical study of the effect of the viscosity variation on the squeeze film performance of a short journal bearing operating with micropolar fluid is presented. The modified Reynolds equation accounting for the viscosity variation in micropolar fluid is mathematically derived. To obtain a closed form solution, the short bearing approximation under constant load is considered. The modified Reynolds equation is solved for the fluid film pressure and then the bearing characteristics, such as obtaining the load carrying capacity and the squeeze film time. According to the results evaluated, the micropolar fluid as a lubricant improves the squeeze film characteristics and results in a longer bearing life, whereas the viscosity variation factor decreases the load carrying capacity and squeezes film time. The result is compared with the corresponding Newtonian case.


Author(s):  
Krzysztof Biernacki

Cycloidal gears constitute the main working unit of the fluid power gerotor machine. The paper presents a way of increasing the load-carrying capacity of cycloidal unit made of plastic. The aim has been reached through design and material modifications. As a result of those modifications, a design concept of the cycloidal gear system, which is different from the structures previously produced, has been created. The introduced modifications are based on the theoretical analysis of stress and deformations that occur in cycloidal gears during their operation. The analysis was conducted by means of the finite element method. Although the main focus was on analyzing the mechanism behind the deformations, an attempt was also made at extending the application scope for finite element method. The analysis by means of finite element method has been conducted for plastic and steel at the same time. This is result of showed design in which plastics and steel form the construction together one integral part. As a result of the analysis, the maximum value of the working pressure at which hydraulic gerotor machines with plastic cycloidal gears can work was determined. Thanks to the use of the finite element method one can point out the way of introduction of plastics in hydraulic machines construction.


2020 ◽  
Vol 75 (6) ◽  
pp. 533-542
Author(s):  
Poosan Muthu ◽  
Vanacharla Pujitha

AbstractThe influence of concentration of solute particles on squeeze film lubrication between two poroelastic surfaces has been analyzed using a mathematical model. Newtonian viscous fluid is considered as a lubricant whose viscosity varies linearly with concentration of suspended solute particles. Convection-diffusion model is proposed to study the concentration of solute particles and is solved using finite difference method of Crank–Nicolson scheme. An iterative procedure is used to get the solution for concentration, pressure and velocity components in film region. It has been observed that load carrying capacity decreases as the concentration of solute particles in the fluid film decreases. Further, the concentration of suspended solute particles decreases as the permeability of the poroelastic plate increases and these results may be useful in understanding the mechanism of human joint.


Author(s):  
Hanumagowda Bannihalli Naganagowda ◽  
Sreekala Cherkkarathandayan Karappan

The aim of this paper is to presents a theoretical analysis on squeeze-film characteristics of a rough porous circular stepped plate in the vicinity of pressure-dependent viscosity and lubrication by micropolar fluids. A closed-form expression for non-dimensional pressure, load, and squeezing time is derived based on Eringen’s theory, Darcy’s equation, and Christensen’s stochastic approach. Results indicate that the effects of pressure-dependent viscosity, surface roughness, and micropolar fluids play an important role in increasing the load-carrying capacity and squeezing time, whereas the presence of porous media decreases the load-carrying capacity and squeezing time of the rough porous circular stepped plates.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Binbin Su ◽  
Xianghe Zou ◽  
Lirong Huang

Purpose This paper aims to investigate the squeeze film lubrication properties of hexagonal patterned surface inspired by the epidermis structure of tree frog’s toe pad and numerically explore the working mechanism of hexagonal micropillar during the acquisition process of high adhesive and friction for wet contacts. Design/methodology/approach A two-dimensional elastohydrodynamic numerical model is employed for the squeezing contacts. The pressure distribution, load carrying capacity and liquid flow rate of the squeeze film are obtained through a simultaneous solution of the two-dimensional Reynolds equation and elasticity deformation equations. Findings Higher pressure is found to be longitudinally distributed across individual hexagonal pillar, with pressure peak emerging at the center of hexagonal pillar. Expanding the area density and shrinking the channel depth or initial film thickness will improve the magnitude of squeezing pressure. Relatively lower pressure is generated inside interconnected channels, which reduces the load carrying capacity of the squeeze film. Meanwhile, the introduction of microchannel is revealed to downscale the total mass flow rate of squeezing contacts. Originality/value This paper provides a good proof for the working mechanism of surface microstructures during the acquisition process of high adhesive and friction for wet contacts.


Sign in / Sign up

Export Citation Format

Share Document