EFFECT OF COARSE-TO-FINE WC GRAIN RATIO ON MECHANICAL PROPERTIES AND ABRASIVE WEAR OF WC-8Co CEMENTED CARBIDES

Tribologia ◽  
2016 ◽  
Vol 265 (1) ◽  
pp. 103-115
Author(s):  
Der-Liang YUNG ◽  
Maksim ANTONOV ◽  
Irina HUSSAINOVA ◽  
Renno VEINTHAL ◽  
Sture HOGMARK

This study performs a comprehensive analysis concerning the amount of fine tungsten carbide (WC) grains needed for the appropriate reinforcement of the cobalt (Co) metallic binder in WC-8Co cemented carbides. The goal is to investigate the balance of coarse-to-fine grain distribution to achieve overall improvement of the material’s mechanical and wear properties. All samples possessed the same WC-8Co binder content, therefore, allowing the role of grain size distribution to be tested. It was found that a ratio of 8:1 wt% of coarse to ultrafine grain WC yielded an appropriate balance between material hardness, fracture toughness, and rupture strength. Upon adding grain growth inhibitors vanadium carbide (VC) and chromium carbide (Cr3C2), the overall wear resistance is further improved compared to undoped composites when samples are tested under abrasive wear conditions.

Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1865
Author(s):  
Leonardo Schippa

When dealing with natural geo–hazards, it is important to understand the influence of sediment sorting on debris flows. The presence of coarse fraction is one of the aspects which affects the rheological behaviour of natural viscous granular fluid mixtures. In this paper, experiments on reconstituted debris flow mixtures with different coarse–to–fine sediment ratios are considered. Such mixtures behave just as non–Newtonian yield stress fluids and their rheological behaviour is largely affected by the presence of coarse fraction. Experimental results demonstrate that yield stress is very sensitive not only to bulk sediment concentration but also to coarse sediment fraction. A novel yield stress model is presented. It accounts for an empirical grading function depending on the coarse–to–fine grain content. The yield stress model performed satisfactorily in comparison with the experiments, showing that it is almost independent of the coarse–to–fine grain fraction in case of dominant coarse sediment content.


Author(s):  
Shao Lifan ◽  
Ge Yuan ◽  
Kong Dejun

In order to improve the friction and wear properties of Cu10Al–MoS2 coating, the addition of CeO2 is one of the present research hot spots. In this work, Cu10Al–MoS2 coatings with different CeO2 mass fractions were successfully fabricated on Q235 steel using a laser cladding. The microstructure and phase compositions of obtained coatings were analyzed using an ultra-depth of field microscope and X-ray diffraction, respectively. The friction-wear test was carried out under oil lubrication using a ball-on-disk wear tester, and the effects of CeO2 mass fraction on the microstructure, hardness, and friction-wear properties were studied, and the wear mechanism was also discussed. The results show that the laser cladded Cu10Al–MoS2 coatings with the different CeO2 mass fractions were mainly composed of Cu9Al4, Cu, AlFe3, Ni, MoS2, and CeO2 phases. The Vickers-hardness (HV) of Cu10Al–8MoS2–3CeO2, Cu10Al–8MoS2–6CeO2, and Cu10Al–8MoS2–9CeO2 coatings was 418, 445, and 457 HV0.3, respectively, which indicates an increase in hardness with the increase of CeO2 mass fraction. The average coefficients of friction (COF) and wear rates decrease with the increase of CeO2 mass fraction, presenting the outstanding friction reduction and wear resistance performances. The wear mechanism of Cu10Al–MoS2 coatings is changed from abrasive wear with slight fatigue wear to abrasive wear with the increase of CeO2 mass fraction.


Wear ◽  
2006 ◽  
Vol 260 (7-8) ◽  
pp. 699-704 ◽  
Author(s):  
Xinhong Wang ◽  
Min Zhang ◽  
Zengda Zou ◽  
Shiyao Qu

Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1680
Author(s):  
Matija Sakoman ◽  
Danko Ćorić ◽  
Mateja Šnajdar Musa

The plasma-assisted chemical vapor deposition (PACVD) technique has shown many advantages in applications, where thin coatings with superior wear properties are demanded, especially for geometrically complex parts. In this study, multilayered gradient TiBN coatings that were deposited on nanostructured cemented carbides by the PACVD method were investigated. Nanostructured samples of cemented carbides with the addition of 5 and 15 wt.% Co were sintered by the hot isostatic pressing, sinter-HIP technique. Surface preparation was conducted on samples in order to enable maximum coating adhesion. Tests that were conducted on produced samples aimed to investigate the mechanical and physical properties of coated samples. These tests included nanoindentation, surface layer characterization, and coating adhesion evaluation while using the Rockwell and scratch test. The obtained results confirmed that the PACVD process can be utilized for applying thin hard coatings to nanostructured cemented carbides that are produced by the sinter HIP process, resulting in a base material/ coating system that exhibits excellent physical and mechanical properties. The results presented in this paper give a valuable contribution to the research of TiBN coating systems and their potential for application under heavy wear conditions.


Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 895 ◽  
Author(s):  
Luca Boccarusso ◽  
Fabio Scherillo ◽  
Umberto Prisco

Microstructure, hardness, transverse rupture strength, and abrasion resistance of WC-10 wt% Co cemented carbides modified with the addition of different mass fraction of Cr3C2, in the range of 0–3 wt%, are studied. The influence of the microstructure, composition and hardness on the mechanical properties and wear resistance is analysed. Considering that the material under investigation can be used as die for the extrusion process of hard ceramic materials, the tribological behaviour was evaluated by performing sliding wear tests in wet conditions using a block-on-ring tribometer. Wear mechanism principally based on binder removal and subsequent fragmentation and microabrasion of the WC grains is proposed. Carbide grain size and bulk hardness can be tuned as function of specific applications by adding different amounts of Cr3C2. In particular, increasing hardness and reducing grain size by the addition of Cr3C2 are demonstrated to considerably enhance the wear performance of these carbides.


2007 ◽  
Vol 546-549 ◽  
pp. 917-922
Author(s):  
Bao Lin Wu ◽  
Gui Ying Sha ◽  
Yi Nong Wang ◽  
Yu Dong Zhang ◽  
Claude Esling

Heavy deformation plus micro alloying could be an effective way to obtain ultrafine grain structure of metals. In the present work, an Al-Cu-Mg alloy was microalloyed with Zr to obtain homogeneous precipitates and then heavily deformed by conventional forging at high temperature. The possible refining processing routes were studied and the superplasticity behaviors of the alloy was investigated. Results show that the micro alloyed alloy can be stably refined to 3-5μm under conventional processing routes. The Al-3Zr precipitates act both as additional sites to enhance recrystallization nucleation rate and pins to impede grain growth to increase the thermal stability of the fine grain structure. However, as the Al3Zr precipitates remains along grain boundaries, the superplastic capability of the material is not high. At 430°C with 1×10-4S-1 strain rate, the elongation obtained was 260%.


Sign in / Sign up

Export Citation Format

Share Document