scholarly journals A Nonlinear Observer to Estimate the Effective Reproduction Number of Infectious Diseases

2021 ◽  
Vol 4 (1) ◽  
pp. 39-45
Author(s):  
Agus Hasan

In this paper, we design a Nonlinear Observer (NLO) to estimate the effective reproduction number (Rt) of infectious diseases. The NLO is designed from a discrete-time augmented Susceptible-Infectious-Removed (SIR) model. The observer gain is obtained by solving a Linear Matrix Inequality (LMI). The method is used to estimate Rt in Jakarta using epidemiological data during COVID-19 pandemic. If the observer gain is tuned properly, this approach produces similar result compared to existing approach such as Extended Kalman filter (EKF).

2021 ◽  
Author(s):  
Agus Hasan

AbstractIn this paper, we design a Nonlinear Observer (NLO) to estimate the effective reproduction number (ℛt) of infectious diseases. The NLO is designed from a discrete-time augmented Susceptible-Infectious-Removed (SIR) model. The observer gain is obtained by solving a Linear Matrix Inequality (LMI). The method is used to estimate ℛt in Jakarta using epidemiological data during COVID-19 pandemic. If the observer gain is tuned properly, this approach produces similar result compared to existing approach such as Extended Kalman filter (EKF).


2021 ◽  
Vol 9 (4A) ◽  
Author(s):  
Ayman E. O. HASSAN ◽  
◽  
Tasnim A. A. MOHAMMED ◽  
Aşkın DEMİRKOL ◽  
◽  
...  

This paper presents the problem of fault diagnosis in a three-tank hydraulic system. A mathematical model of the system is developed in order to apply two different observing algorithms. Unknown Input Observer (UIO) and Extended Kalman Filter (EKF) have been used to detect and isolate actuator and sensor faults. For Unknown Input Observer (UIO), residuals are calculated from the measured and estimated output according to the eigenvalues of the system after processed by Linear Matrix Inequality (LMI). Extended Kalman filter uses process and measurement noise variances for state estimation. Unknown Input Observer and Extended Kalman Filter's performance in fault estimation and isolation is evaluated under different scenarios. Using Extended Kalman Filter (EKF), faults can be diagnosed effectively in the presence of noise, while Unknown Input Observer (UIO) is working better in the absence of noise, and simulation results illustrate that clearly.


2010 ◽  
Vol 2010 ◽  
pp. 1-19 ◽  
Author(s):  
Qiankun Song ◽  
Jinde Cao

The problems on global dissipativity and global exponential dissipativity are investigated for uncertain discrete-time neural networks with time-varying delays and general activation functions. By constructing appropriate Lyapunov-Krasovskii functionals and employing linear matrix inequality technique, several new delay-dependent criteria for checking the global dissipativity and global exponential dissipativity of the addressed neural networks are established in linear matrix inequality (LMI), which can be checked numerically using the effective LMI toolbox in MATLAB. Illustrated examples are given to show the effectiveness of the proposed criteria. It is noteworthy that because neither model transformation nor free-weighting matrices are employed to deal with cross terms in the derivation of the dissipativity criteria, the obtained results are less conservative and more computationally efficient.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Wen-Jer Chang ◽  
Bo-Jyun Huang ◽  
Po-Hsun Chen

For nonlinear discrete-time stochastic systems, a fuzzy controller design methodology is developed in this paper subject to state variance constraint and passivity constraint. According to fuzzy model based control technique, the nonlinear discrete-time stochastic systems considered in this paper are represented by the discrete-time Takagi-Sugeno fuzzy models with multiplicative noise. Employing Lyapunov stability theory, upper bound covariance control theory, and passivity theory, some sufficient conditions are derived to find parallel distributed compensation based fuzzy controllers. In order to solve these sufficient conditions, an iterative linear matrix inequality algorithm is applied based on the linear matrix inequality technique. Finally, the fuzzy stabilization problem for nonlinear discrete ship steering stochastic systems is investigated in the numerical example to illustrate the feasibility and validity of proposed fuzzy controller design method.


Sign in / Sign up

Export Citation Format

Share Document