scholarly journals Inherent Irreversibility of Mixed Convection within Concentric Pipes in a Porous Medium with Thermal Radiation

2021 ◽  
Vol 53 (3) ◽  
pp. 395-414
Author(s):  
Oluwole Daniel Makinde ◽  
Adetayo Samuel Eegunjobi

This work investigated the thermal putrefaction and inherent irreversibility in a steady flow of an incompressible inconstant viscosity radiating fluid within two concentric pipes filled with a porous medium. Following the Brinkmann-Darcy-Forchheimer approach, the nonlinear differential equations governing the model were obtained. The model boundary value problem was addressed numerically via a shooting quadrature with the Runge-Kutta-Fehlberg integration scheme. The effects of diverse emerging parameters on the fluid velocity, temperature, skin friction, Nusselt number, entropy generation rate and the Bejan number are provided in graphs and discussed in this paper.

2018 ◽  
Vol 387 ◽  
pp. 364-372 ◽  
Author(s):  
Oluwole Daniel Makinde ◽  
Adetayo Samuel Eegunjobi

In this paper, we conducted the thermodynamics first and second laws analyses on hydromagnetic boundary layer flow of an incompressible electrically conducting viscous fluid past a vertically stretching sheet embedded in a porous medium with heat source and thermal radiation. The governing equations describing the problem are converted to a system of nonlinear ordinary differential equations using appropriate similarity variables. Using shooting technique coupled with Runge-Kutta-Ferhlberg integration scheme, the model boundary value problem is numerically tackled. The parametric effects on fluid velocity, temperature, skin friction, Nusselt number, entropy generation rate and the Bejan number are presented graphically and discussed quantitatively. Our results revealed among others, that the entropy generation is enhanced by magnetic field, thermal radiation and heat source but lessened by increasing porous medium permeability and buoyancy force.


2022 ◽  
Vol 52 (1) ◽  
pp. 35-41
Author(s):  
Silpisikha Goswami ◽  
Kamalesh Kumar Pandit ◽  
Dipak Sarma

Our motive is to examine the impact of thermal radiation and suction or injection with viscous dissipation on an MHD boundary layer flow past a vertical porous stretched sheet immersed in a porous medium. The set of the flow equations is converted into a set of non-linear ordinary differential equations by using similarity transformation. We use Runge Kutta method and shooting technique in MATLAB Package to solve the set of equations. The impact of non-dimensional physical parameters on flow profiles is analysed and depicted in graphs. We observe the influence of non-dimensional physical quantities on the Nusselt number, the Sherwood number, and skin friction and presented in tables. A comparison of the obtained numerical results with existing results in a limiting sense is also presented. We enhance radiation to observe the deceleration of fluid velocity and temperature profile for both suction and injection. While enhancing porosity parameter accelerates velocity whereas decelerates temperature profile. As the heat source parameter increases, the temperature of the fluid decreases for both suction and injection, it has been found. With the increasing values of the radiation parameter, the skin friction and heat transfer rate decreases. Increasing magnetic parameter decelerates the skin friction, Nusselt number, and Sherwood number.


Entropy ◽  
2020 ◽  
Vol 22 (11) ◽  
pp. 1214 ◽  
Author(s):  
Kun Yang ◽  
Wei Huang ◽  
Xin Li ◽  
Jiabing Wang

The heat transfer and entropy generation in a tube filled with double-layer porous media are analytically investigated. The wall of the tube is subjected to a constant heat flux. The Darcy-Brinkman model is utilized to describe the fluid flow, and the local thermal non-equilibrium model is employed to establish the energy equations. The solutions of the temperature and velocity distributions are analytically derived and validated in limiting case. The analytical solutions of the local and total entropy generation, as well as the Nusselt number, are further derived to analyze the performance of heat transfer and irreversibility of the tube. The influences of the Darcy number, the Biot number, the dimensionless interfacial radius, and the thermal conductivity ratio, on flow and heat transfer are discussed. The results indicate, for the first time, that the Nusselt number for the tube filled with double-layer porous media can be larger than that for the tube filled with single layer porous medium, while the total entropy generation rate for the tube filled with double-layer porous media can be less than that for the tube filled with single layer porous medium. And the dimensionless interfacial radius corresponding to the maximum value of the Nusselt number is different from that corresponding to the minimum value of the total entropy generation rate.


2017 ◽  
Vol 6 (3) ◽  
Author(s):  
M. Gnaneswara Reddy

AbstractThis communication presents the transportation of third order hydromagnetic fluid with thermal radiation by peristalsis through an irregular channel configuration filled a porous medium under the low Reynolds number and large wavelength approximations. Joule heating, Hall current and homogeneous-heterogeneous reactions effects are considered in the energy and species equations. The Second-order velocity and energy slip restrictions are invoked. Final dimensionless governing transport equations along the boundary restrictions are resolved numerically with the help of NDsolve in Mathematica package. Impact of involved sundry parameters on the non-dimensional axial velocity, fluid temperature and concentration characteristics have been analyzed via plots and tables. It is manifest that an increasing porosity parameter leads to maximum velocity in the core part of the channel. Fluid velocity boosts near the walls of the channel where as the reverse effect in the central part of the channel for higher values of first order slip. Larger values of thermal radiation parameter


Sign in / Sign up

Export Citation Format

Share Document