scholarly journals Bacterial remediation of heavy metal polluted soil and effluent from paper mill industry

2020 ◽  
Vol 35 (2) ◽  
pp. e2020009
Author(s):  
Uloma Linda Nwaehiri ◽  
Peter Ikechukwu Akwukwaegbu ◽  
Bertram Ekejiuba Bright Nwoke

2018 ◽  
Vol 69 (7) ◽  
pp. 1695-1698
Author(s):  
Marin Rusanescu ◽  
Carmen Otilia Rusanescu ◽  
Gheorghe Voicu ◽  
Mihaela Begea

A calcium bentonite from Orasu Nou deposit (Satu Mare Romania) was used as raw material. We have conducted laboratory experiments to determine the influence of bentonite on the degree of heavy metal retention. It has been observed that the rate of retention increases as the heavy metal concentration decreases. Experimental studies have been carried out on metal retention ( Zn) in bentonite. In this paper, we realized laboratory experiments for determining the influence of metal (Zn) on the growth and development of two types of plants (Pelargonium domesticum and Kalanchoe) and the effect of bentonite on the absorption of pollutants. These flowers were planted in unpolluted soil, in heavy metal polluted soil and in heavy metal polluted soil to which bentonite was added to observe the positive effect of bentonite. It has been noticed that the flowers planted in unpolluted soil and polluted with heavy metals to which bentonite has been added, the flowers have flourished, the leaves are still green and the plants whose soils have been polluted with heavy metals began to dry after 6 days, three weeks have yellowish leaves and flowers have dried. Experiments have demonstrated the essential role of bentonite for the removal of heavy metals polluted soil.



2021 ◽  
Vol 14 (13) ◽  
Author(s):  
Fatemeh Mohebzadeh ◽  
Babak Motesharezadeh ◽  
Mohammad Jafari ◽  
Salman Zare ◽  
Maryam Saffari Aman


2021 ◽  
Vol 660 (1) ◽  
pp. 012092
Author(s):  
Yuhan Xu ◽  
Luolei Zhang ◽  
Peng Yu ◽  
Chongjin Zhao


1995 ◽  
Vol 18 (3) ◽  
pp. 191-203 ◽  
Author(s):  
Eva M. Top ◽  
Helene Rore ◽  
Jean-Marc Collard ◽  
Veerle Gellens ◽  
Galina Slobodkina ◽  
...  




2012 ◽  
Vol 599 ◽  
pp. 529-532 ◽  
Author(s):  
Zhen Ying Zhang ◽  
Da Zhi Wu ◽  
Qi Mao Cai

The main ways of soil polluted by heavy metal are analyzed, and the technical methods of treating the polluted soil have been put forward. The research results show that physical rehabilitation, cement solidification and plant-remediation are main technologies to treat the polluted soil. The research results can be used for provided reference in actual projects.



Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1608
Author(s):  
Aslihan Esringü ◽  
Metin Turan ◽  
Asli Cangönül

Heavy metal pollution is among the important environmental problems in the world. Many techniques have already been used to remove the heavy metals such as lead (Pb) and cadmium (Cd). Among them, the phytoremediation method is an environmentally friendly and green technology. This study was carried out to determine the efficiency of fulvic acid (FA) application in removing Pb and Cd from polluted soil using Tagetes eracta L. and Zinnia elegans Jacq. ornamental plants. The results indicated that, FA application, number of flower per plants, and plant fresh weight of Tagetes eracta plants and Zinnia elegans plants increased 187.5%, 104.5% and 155.5%, 57.7%, respectively with application of 7000 mg L−1 FA at 100 mg kg−1 Pb pollution condition, whereas 42.85%, 16.5%, and 44.4–36.1% with application of 7000 mg L−1 FA at 30 mg kg±1 Cd pollution condition, respectively. With the FA application in the Zinnia elegans plant, the root part has accumulated 51.53% more Pb than the shoot part. For Cd, the shoot part accumulated 35.33% more Cd than the root. The effect of FA application on superoxide dismutase (SOD), peroxidase (POD) and, catalase (CAT) of the Tagetes eracta were decreased as 32.7%, 33.1%, and 35.1% for Pb, 21.2%, 25.1%, and 26,1%, for Cd, and 15.1%, 22.7%, and 37.7% for Pb, and 7.55%, 18.0%, and 18.8% for Cd were in Zinnia elegans respectively. In conclusion, Tagetes eracta and Zinnia elegans can not be recommended for remediation of Pb and Cd polluted area, but FA can be recommended for Pb and Cd stabilization in polluted soil.



Author(s):  
Muibat Fashola

Introduction: Indiscriminate dumping of spent oils enriched with heavy metals has led to increase in heavy metals load in the soil. Heavy metals exert toxic effects on biodegradation of organic pollutant in cocontaminated soil and there is need to find suitable strategies for their removal. Aim: The aim of this study was to assess the heavy metals resistance capability of indigenous Bacillus species in hydrocarbon polluted soil to nickel (Ni), Cadmium (Cd), Lead (Pb) and Chromium (Cr). Materials and Methods: Heavy metal tolerant bacteria were isolated from hydrocarbon polluted soil using Luria-Berthani agar supplemented with the respective metals and spread plate techniques. The isolates were putatively identified on the basis of their colonial morphology and biochemical characteristics and their antibiotics susceptibility pattern were evaluated using disc diffusion method. Results: The maximum tolerable concentration (MTC) of the four heavy metals to the selected isolates was 2 mM. Four bacteria isolates able to withstand the MTC were putatively identified as Bacillus subtilis, Bacillus megaterium, Bacillus laterosporus and Bacillus polymyxa. Out of the four Bacillus species, only B. laterosporus did not show multiple tolerance to the tested antibiotics which show that there is correlation between heavy metal tolerance and antibiotics resistance by the isolates. Conclusion: Multiple heavy metal tolerance Bacillus spp. were isolated from crude oil polluted soil. These bacteria could be suitable agents for bioaugmentation of hydrocarbon polluted soil co-contaminated with heavy metals.



Sign in / Sign up

Export Citation Format

Share Document