scholarly journals Assessment on Thermal Transmission Property of Wall Through a Scaled Model Test

2015 ◽  
Vol 43 (6) ◽  
pp. 884-889
Author(s):  
Yoon-Seong Chang ◽  
Sejong Kim ◽  
Kug-Bo Shim ◽  
Sang-Joon Lee ◽  
Yeonjung Han ◽  
...  
Author(s):  
Charles Lefevre ◽  
Yiannis Constantinides ◽  
Jang Whan Kim ◽  
Mike Henneke ◽  
Robert Gordon ◽  
...  

Vortex-Induced Motion (VIM), which occurs as a consequence of exposure to strong current such as Loop Current eddies in the Gulf of Mexico, is one of the critical factors in the design of the mooring and riser systems for deepwater offshore structures such as Spars and multi-column Deep Draft Floaters (DDFs). The VIM response can have a significant impact on the fatigue life of mooring and riser components. In particular, Steel Catenary Risers (SCRs) suspended from the floater can be sensitive to VIM-induced fatigue at their mudline touchdown points. Industry currently relies on scaled model testing to determine VIM for design. However, scaled model tests are limited in their ability to represent VIM for the full scale structure since they are generally not able to represent the full scale Reynolds number and also cannot fully represent waves effects, nonlinear mooring system behavior or sheared and unsteady currents. The use of Computational Fluid Dynamics (CFD) to simulate VIM can more realistically represent the full scale Reynolds number, waves effects, mooring system, and ocean currents than scaled physical model tests. This paper describes a set of VIM CFD simulations for a Spar hard tank with appurtenances and their comparison against a high quality scaled model test. The test data showed considerable sensitivity to heading angle relative to the incident flow as well as to reduced velocity. The simulated VIM-induced sway motion was compared against the model test data for different reduced velocities (Vm) and Spar headings. Agreement between CFD and model test VIM-induced sway motion was within 9% over the full range of Vm and headings. Use of the Improved Delayed Detached Eddy Simulation (IDDES, Shur et al 2008) turbulence model gives the best agreement with the model test measurements. Guidelines are provided for meshing and time step/solver setting selection.


Author(s):  
Fei Duan ◽  
Zhiqiang Hu ◽  
Jin Wang

Wind power has great potential because of its clean and renewable production compared to the traditional power. Most of the present researches for floating wind turbine rely on the hydro-aero-elastic-servo simulation codes and have not been exhaustively validated yet. Thus, model tests are needed and make sense for its high credibility to master the kinetic characters of floating offshore structures. The characters of kinetic responses of the spar-type wind turbine are investigated through model test research technique. This paper describes the methodology for wind/wave model test that carried out at Deepwater Offshore Basin in Shanghai Jiao Tong University at a scale of 1:50. A Spar-type floater was selected to support the wind turbine in this test and the model blade was geometrically scaled down from the original NREL 5 MW reference wind turbine blade. The detail of the scaled model of wind turbine and the floating supporter, the test set-up configuration, the mooring system, the high-quality wind generator that can create required homogeneous and low turbulence wind, and the instrumentations to capture loads, accelerations and 6 DOF motions are described in detail, respectively. The isolated wind/wave effects and the integrated wind-wave effects on the floating wind turbine are analyzed, according to the test results.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Zhiyi Jin ◽  
Taiyue Qi ◽  
Xiao Liang ◽  
Bo Lei ◽  
Yangyang Yu ◽  
...  

With the rapid development of the urbanization, many underpasses are designed and constructed in big cities to alleviate the huge traffic pressure. The construction method has been changed from traditional on-site concrete pouring technology to prefabricated assembly technology. However, this change will inevitably bring out some new problems to be studied such as the behaviour of the radial joints. In this study, the numerical simulation model of Moziqiao precast and assemble underpass with large asymmetric cross section was constructed by using the ABAQUS software to study the transient response of the underpass induced by ground surface dynamic load. Based on the similarity theory a 1/10 scaled model test was carried out to study the long-term radial joint behaviour of the underpass considering the prestress loss during the 2000 000 loading cycles. The results transient dynamic response from computed and tested was compared in terms of acceleration. The comparison showed that the transient response accelerations have good consistency. The results of the physical model test were analysed in terms of joint opening, closure, and slipping. The accumulative joint opening was closely correlated to the prestress level, and the joint opening at different prestress levels increased with the loss of the prestress. The joints closure decreased with the increase of the previous accumulative color value. The joint slipping mainly attributed to the slipping of the top segment. Both the opening and slipping of the joints at RJ 1 were larger than that of RJ3 due to the wider span of RJ1, which reflected an asymmetric effect. This study revealed the long-term accumulative behaviour of the radial joints, which convinced us that the long-term accumulative deformation of the joints should be taken into consideration during the design stage for similar projects.


2006 ◽  
Vol 72 (724) ◽  
pp. 3899-3904 ◽  
Author(s):  
Hiroyuki KONO ◽  
Yoshihiro SUDA ◽  
Masahiro YAMAGUCHI ◽  
Katsuaki TAKASAKI ◽  
Youhei HIRONAKA ◽  
...  
Keyword(s):  

2012 ◽  
Vol 14 (3) ◽  
pp. 231-246
Author(s):  
Dong-Seok Lee ◽  
Jae-Hyun Joen ◽  
Jong-Deok Park ◽  
Seok-Won Lee
Keyword(s):  

2019 ◽  
Vol 123 (1261) ◽  
pp. 398-415 ◽  
Author(s):  
L. L. Zhou ◽  
D. K. Li

ABSTRACTScaled model test is an effective means to verify the design of a stiffened cylindrical shell. However, there is a problem of similarity distortion by use of the traditional dimensional analysis to design scaled models. In this present study, an equivalent similar method is proposed to solve the problem. The method is applied to an axial stiffened cylindrical shell, and the equivalent criteria and scaling laws satisfying the equivalent similarity of global bending mode are derived and verified by numerical examples. The results indicate that the similarity distortion caused by practical conditions for the stiffened cylindrical shell can be solved and the parameters of scaled model can be designed more freely with the proposed equivalent similar method.


1975 ◽  
Vol 58 (S1) ◽  
pp. S37-S37
Author(s):  
M. E. Wang ◽  
R. M. Slone ◽  
J. E. Robertson ◽  
L. Keefe

2016 ◽  
Vol 106 (13) ◽  
pp. 114-119
Author(s):  
Jamin PARK ◽  
Jae-Yeol CHO
Keyword(s):  

2020 ◽  
Vol 8 (5) ◽  
pp. 378
Author(s):  
Tetsuhiro Yuura ◽  
Hirotada Hashimoto ◽  
Akihiko Matsuda

Free-running model tests were conducted using a scaled model of a large cruise ship with a damaged compartment, to investigate the effects of damage opening and floodwater on the manoeuvring performance in calm water and regular and irregular head waves. Drifting tests in regular beam waves were also performed. The experimental results indicated that the course-keeping ability in waves and turning ability became worse in the damaged condition. However, the target ship retained its manoeuvrability for safe return to the port, on its own, even in a damaged state. As it is time- and cost-consuming to conduct a free-running model experiment, a captive model test was also carried out to develop a system-based simulation model for evaluating the manoeuvrability of large cruise ships after damage.


Sign in / Sign up

Export Citation Format

Share Document