Analysis on Characteristics of the Energy Performance Index Depending on the Building Uses for Non-residential Building

Author(s):  
Hee-Kyung Jang ◽  
Hae-Kwon Jeong ◽  
Young-Sun Jeong ◽  
Ki-Hyung Yu
Buildings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 59
Author(s):  
Abraham Yezioro ◽  
Isaac Guedi Capeluto

Improving the energy efficiency of existing and new buildings is an important step towards achieving more sustainable environments. There are various methods for grading buildings that are required according to regulations in different places for green building certification. However, in new buildings, these rating systems are usually implemented at late design stages due to their complexity and lack of integration in the architectural design process, thus limiting the available options for improving their performance. In this paper, the model ENERGYui used for design and rating buildings in Israel is presented. One of its main advantages is that it can be used at any design stage, including the early ones. It requires information that is available at each stage only, as the additional necessary information is supplemented by the model. In this way, architects can design buildings in a way where they are aware of each design decision and its impact on their energy performance, while testing different design directions. ENERGYui rates the energy performance of each basic unit, as well as the entire building. The use of the model is demonstrated in two different scenarios: an office building in which basic architectural features such as form and orientation are tested from the very beginning, and a residential building in which the intervention focuses on its envelope, highlighting the possibilities of improving their design during the whole design process.


2020 ◽  
Vol 10 (13) ◽  
pp. 4489
Author(s):  
Zakaria Che Muda ◽  
Payam Shafigh ◽  
Norhayati Binti Mahyuddin ◽  
Samad M.E. Sepasgozar ◽  
Salmia Beddu ◽  
...  

The increasing need for eco-friendly green building and creative passive design technology in response to climatic change and global warming issues will continue. However, the need to preserve and sustain the natural environment is also crucial. A building envelope plays a pivotal role in areas where the greatest heat and energy loss often occur. Investment for the passive design aspect of building envelopes is essential to address CO 2 emission. This research aims to explore the suitability of using integral-monolithic structural insulation fibre-reinforced lightweight aggregate concrete (LWAC) without additional insulation as a building envelope material in a high-rise residential building in the different climatic zones of the world. Polypropylene and steel fibres in different dosages were used in a structural grade expanded clay lightweight aggregate concrete. Physical and thermal properties of fibre reinforced structural LWAC, normal weight concrete (NWC) and bricks were measured in the lab. The Autodesk@Revit-GBS simulation program was implemented to simulate the energy consumption of a 29-storey residential building with shear wall structural system using the proposed fibre-reinforced LWAC materials. Results showed that energy savings between 3.2% and 14.8% were incurred in buildings using the fibre-reinforced LWAC across various climatic regions as compared with traditional NWC and sand-cement brick and clay brick walls. In conclusion, fibre-reinforced LWAC in hot-humid tropical and temperate Mediterranean climates meet the certified Green Building Index (GBI) requirements of less than 150 kW∙h∙m−2. However, in extreme climatic conditions of sub-arctic and hot semi-arid desert climates, a thicker wall or additional insulation is required to meet the certified green building requirements. Hence, the energy-saving measure is influenced largely by the use of fibre-reinforced LWAC as a building envelope material rather than because of building orientation.


2019 ◽  
Vol 111 ◽  
pp. 03003
Author(s):  
Kaoutar Zeghari ◽  
Hasna Louahlia ◽  
Malo Leguern ◽  
Mohamed Boutouil ◽  
Hamid Gualous ◽  
...  

The appliance of sustainable development approach in building has urged construction industry to adopt proper measurements to protect environment and reduce residential building energy consumption and CO2 emissions. Thus, an increasing interest in alternative building materials has developed including the use of bio-based materials such as cob which is studied in this paper. In the previous work, many experimental and numerical studies have been carried out to characterize thermal behaviour of earth buildings, reduce its thermal conductivity and water content. In this paper, an experimental study is carried out to determine the thermal properties and energy performance of cob building. Cob samples within different soil and fiber contents are studied using an experimental set up instrumented with flux meters and micro-thermocouples in order to evaluate the local heat flux and thermal conductivity during stationary regime. The results are analysed and compared to deduce the performant mixes in terms of thermal behaviour while respecting the French thermal regulation. A static thermal simulation based on RT 2012 calculation method (the official French calculation method for the energy performance of new residential and commercial buildings according to France thermal regulation) is used to compare energy performance between conventional and cob building using the French climate data base .


2020 ◽  
Vol 197 ◽  
pp. 02012 ◽  
Author(s):  
Franz Bianco Mauthe Degerfeld ◽  
Ilaria Ballarini ◽  
Giovanna De Luca ◽  
Mamak P. Tootkaboni ◽  
Vincenzo Corrado

The EN ISO 52016-1:2018 technical standard has introduced a new simplified dynamic method for the calculation of the building energy need for heating and cooling. This new procedure combines a low amount of input data required, as for the previous quasi-steady and dynamic simplified methods of the withdrawn EN ISO 13790 standard, with an increased accuracy, which would reduce the gap with detailed dynamic methods. This work is part of a broader research activity aimed at investigating the new simplified dynamic model and highlighting its strengths and weaknesses, in terms of accuracy and robustness. Specifically, the work addresses the parameters that have a great influence on the final results and the effects of uncertainties in input data. To this purpose both standard and tailored energy performance assessments have been applied, in particular in the first one a continuous operation period of the space heating system was supposed, and in the second one an intermittent operation system was chosen. A sensitivity analysis was also carried out to quantify the variation of the heating and cooling loads with the set-point temperature, the windows physical properties, the heat capacity and the thermal transmission properties of opaque components, as well as the occupancy related input parameters, such as the internal heat gains and the ventilation flow rate. The analysis was applied to a multi-unit residential building located in Rome and built in the first half of the 20th century. The results outline absolute relevance of the set point temperatures. The significance of occupant behaviour and the importance of the correct definition of the component thermal properties is also pointed out through the comparison between the standard and tailored assessments.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 237 ◽  
Author(s):  
S. Soutullo ◽  
E. Giancola ◽  
M. J. Jiménez ◽  
J. A. Ferrer ◽  
M. N. Sánchez

Based on the European energy directives, the building sector has to provide comfortable levels for occupants with minimum energy consumption as well as to reduce greenhouse gas emissions. This paper aims to compare the impact of climate change on the energy performance of residential buildings in order to derive potential design strategies. Different climate file inputs of Madrid have been used to quantify comparatively the thermal needs of two reference residential buildings located in this city. One of them represents buildings older than 40 years built according to the applicable Spanish regulations prior to 1979. The other refers to buildings erected in the last decade under more energy-restrictive constructive regulations. Three different climate databases of Madrid have been used to assess the impact of the evolution of the climate in recent years on the thermal demands of these two reference buildings. Two of them are typical meteorological years (TMY) derived from weather data measured before 2000. On the contrary, the third one is an experimental file representing the average values of the meteorological variables registered in Madrid during the last decade. Annual and monthly comparisons are done between the three climate databases assessing the climate changes. Compared to the TMYs databases, the experimental one records an average air temperature of 1.8 °C higher and an average value of relative humidity that is 9% lower.


Sign in / Sign up

Export Citation Format

Share Document