Straining at the Leash: Understanding the Full Potential of the Deep-Water, Subsalt Mad Dog Field, from Appraisal through Early Production

Author(s):  
Christopher Walker ◽  
Paul Belvedere ◽  
Jennifer Petersen ◽  
Shalina Warrior ◽  
Andrew Cunningham ◽  
...  
1994 ◽  
Vol 29 (4) ◽  
pp. 127-132 ◽  
Author(s):  
Naomi Rea ◽  
George G. Ganf

Experimental results demonstrate bow small differences in depth and water regime have a significant affect on the accumulation and allocation of nutrients and biomass. Because the performance of aquatic plants depends on these factors, an understanding of their influence is essential to ensure that systems function at their full potential. The responses differed for two emergent species, indicating that within this morphological category, optimal performance will fall at different locations across a depth or water regime gradient. The performance of one species was unaffected by growth in mixture, whereas the other performed better in deep water and worse in shallow.


2011 ◽  
Vol 51 (2) ◽  
pp. 671
Author(s):  
Hayden Marcollo ◽  
Christopher Carra

Floating early production systems (FEPS) are becoming more important to the successful exploitation of Australia's deep water oil and gas. Importantly, FEPS help oil and gas operators reduce deep water full field development risk, as uncertainty in the reservoir characteristics are reduced by obtaining dynamic data (that is, partially producing some of the reservoir). This paper will present a review of existing FEPS that are now in use or have previously been in use worldwide and will discuss where they are headed in the future. The paper focuses on: The selection of the floating and subsea-vessel, mooring, riser, mechanical connection, etcetera; Technology presently available; and, Addressing the requirements in situations where new floating and subsea technology is needed. The qualification limits of existing technology will be discussed in the context of what systems are ready and off-the-shelf for operators to make use of now. The choice of appropriate FEPS will be discussed as a function of: proximity to pipeline infrastructure, potential production rate, capability to re-inject associated gas, prevailing variation in year-round environmental conditions, waterdepth, and, geotechnical description of sea bottom. A high level conceptual case study showing typical costs for the implementation of a deep water FEPS will be presented as a way of understanding the potential upside and downside exposure for an operator considering undertaking a deep water FEPS program.


Author(s):  
Thomas A. A. Adcock ◽  
Shiqiang Yan

The non-linear changes to a NewWave type wave-group are helpful in developing our understanding of the non-linear interactions which can lead to the formation of freak waves. In addition, Gaussian wave-groups are used in model tests where it is useful to have a simple model for their non-linear dynamics. This paper derives a simple analytical model to describe the nonlinear changes to a wave-group as it focuses. This paper is an extension to finite depth of the theory developed for deep water in Adcock & Taylor (2009) (Proc. Roy. Soc. A 465(2110)). The model is derived using the conserved quantities of the cubic nonlinear Schrodinger equation (NLSE). In deep water there are substantial changes to the group shape and spectrum as the wave-group focuses, and the characteristics of these changes are governed by the Benjamin-Feir Index. However, in finite depth the characteristics of the non-linear interactions change, reducing the non-linear changes to the group shape. The analytical model is validated against simulations using the NLSE and against full potential flow solutions using a QALE-FEM numerical scheme. We also compare its predictions against experiments in a physical wavetank. We find that the NLSE, and thus analytical theories derived from it, capture the dominant physics in the evolution of narrowbanded wave-groups.


1988 ◽  
Vol 62 (01) ◽  
pp. 1-8 ◽  
Author(s):  
Ronald E. Martin

The utility of benthic foraminifera in bathymetric interpretation of clastic depositional environments is well established. In contrast, bathymetric distribution of benthic foraminifera in deep-water carbonate environments has been largely neglected. Approximately 260 species and morphotypes of benthic foraminifera were identified from 12 piston core tops and grab samples collected along two traverses 25 km apart across the northern windward margin of Little Bahama Bank at depths of 275-1,135 m. Certain species and operational taxonomic groups of benthic foraminifera correspond to major near-surface sedimentary facies of the windward margin of Little Bahama Bank and serve as reliable depth indicators. Globocassidulina subglobosa, Cibicides rugosus, and Cibicides wuellerstorfi are all reliable depth indicators, being most abundant at depths >1,000 m, and are found in lower slope periplatform aprons, which are primarily comprised of sediment gravity flows. Reef-dwelling peneroplids and soritids (suborder Miliolina) and rotaliines (suborder Rotaliina) are most abundant at depths <300 m, reflecting downslope bottom transport in proximity to bank-margin reefs. Small miliolines, rosalinids, and discorbids are abundant in periplatform ooze at depths <300 m and are winnowed from the carbonate platform. Increased variation in assemblage diversity below 900 m reflects mixing of shallow- and deep-water species by sediment gravity flows.


Author(s):  
R.W. Horne

The technique of surrounding virus particles with a neutralised electron dense stain was described at the Fourth International Congress on Electron Microscopy, Berlin 1958 (see Home & Brenner, 1960, p. 625). For many years the negative staining technique in one form or another, has been applied to a wide range of biological materials. However, the full potential of the method has only recently been explored following the development and applications of optical diffraction and computer image analytical techniques to electron micrographs (cf. De Hosier & Klug, 1968; Markham 1968; Crowther et al., 1970; Home & Markham, 1973; Klug & Berger, 1974; Crowther & Klug, 1975). These image processing procedures have allowed a more precise and quantitative approach to be made concerning the interpretation, measurement and reconstruction of repeating features in certain biological systems.


Author(s):  
Benjamin M. Siegel

The potential advantages of high voltage electron microscopy for extending the limits of resolution and contrast in imaging low contrast objects, such as biomolecular specimens, is very great. The results of computations will be presented showing that at accelerating voltages of 500-1000 kV it should be possible to achieve spacial resolutions of 1 to 1.5 Å and using phase contrast imaging achieve adequate image contrast to observe single atoms of low atomic number.The practical problems associated with the design and utilization of the high voltage instrument are, optimistically, within the range of competence of the state of the art. However, there are some extremely important and critical areas to be systematically investigated before we have achieved this competence. The basic electron optics of the column required is well understood, but before the full potential of an instrument capable of resolutions of better than 1.5 Å are realized some very careful development work will be required. Of great importance for the actual achievement of high resolution with a high voltage electron microscope is the fundamental limitation set by the characteristics of the high voltage electron beam that can be obtained from the accelerator column.


2019 ◽  
Vol 62 (5) ◽  
pp. 1243-1257 ◽  
Author(s):  
Peggy Pik Ki Mok ◽  
Holly Sze Ho Fung ◽  
Vivian Guo Li

Purpose Previous studies showed early production precedes late perception in Cantonese tone acquisition, contrary to the general principle that perception precedes production in child language. How tone production and perception are linked in 1st language acquisition remains largely unknown. Our study revisited the acquisition of tone in Cantonese-speaking children, exploring the possible link between production and perception in 1st language acquisition. Method One hundred eleven Cantonese-speaking children aged between 2;0 and 6;0 (years;months) and 10 adolescent reference speakers participated in tone production and perception experiments. Production materials with 30 monosyllabic words were transcribed in filtered and unfiltered conditions by 2 native judges. Perception accuracy was based on a 2-alternative forced-choice task with pictures covering all possible tone pair contrasts. Results Children's accuracy of production and perception of all the 6 Cantonese tones was still not adultlike by age 6;0. Both production and perception accuracies matured with age. A weak positive link was found between the 2 accuracies. Mother's native language contributed to children's production accuracy. Conclusions Our findings show that production and perception abilities are associated in tone acquisition. Further study is needed to explore factors affecting production accuracy in children. Supplemental Material https://doi.org/10.23641/asha.7960826


Sign in / Sign up

Export Citation Format

Share Document